Political Economics - Explaining Economic Policy

T. Persson and G. Tabellini (Book - 2000; Chapters 1-5)
presented by Salvatore Lo Bello

Macro Reading Group UC3M

November 14, 2012
The Motivation

- Economic policies vary greatly across time and place: in the late 1990s total government spending was more than 60% of GDP in Sweden, above 50% in many continental Europe countries, around 35% in Japan, Switzerland, USA.

- The composition of the spending is also characterized by a great variability across countries (e.g. transfers are high in Europe but low in Latin America).

- How can we explain the variations in the data? Is there any systematic correlation with other aspects of the economic and social environment?

- Final goal: explain economic policy in modern democracies, size/form of redistributive programs, extent/type of public good provision, size of government deficits, extent of corruption. We are at the boundary between political science and economics.
Politics

- Motivation of Politicians:
 - opportunistic (office seeking, rent seeking) - standard assumption.
 - partisan (they maximize a social welfare function with disproportionate weights).

- Timing of Politics:
 - Preelection Politics: electoral promises are binding and enforceable; candidates propose policies to maximize their chances of winning.
 - Voters only like economic policies \implies median voter theorem \implies assumptions on the motivation of politicians become unimportant.
 - Voters also like other fixed factors of politicians (ideology) \implies the motivations of politicians matter.
 - Postelection Politics: electoral promises are not binding or too vague to even matter; voters select the politician, not directly the policy.
 - Winner takes all: one politician free to set the policy.
 - Legislative Bargaining.
Heterogeneous agents (characterized by α^i specific feature), affected by a policy vector \mathbf{q}.

$$W(\mathbf{q}, \mathbf{p}; \alpha^i) = \max_{c^i} \left[U(c^i, \mathbf{q}, \mathbf{p}; \alpha^i) \mid H(c^i, \mathbf{q}, \mathbf{p}; \alpha^i) \geq 0 \right].$$

The policymaker sets \mathbf{q}, respecting the market-determined value of \mathbf{p} and some other constraints: $G(\mathbf{q}, \mathbf{p}) \geq 0$. The constraint will typically be binding $\implies \mathbf{p} = P(\mathbf{q})$.

Therefore, we can define the preferred policy of voter i:

$$\mathbf{q}(\alpha^i) = \arg \max_{\mathbf{q}} W(\mathbf{q}; \alpha^i)$$
Restricting Preferences

Arrow (1951) has shown that no general rule enables a democracy to consistently aggregate individual preferences \(\Rightarrow \) majority rule does not always generate well-defined equilibrium policies.

Definition 1

A **Condorcet winner** is a policy \(q^* \) that beats any other feasible policy in a pairwise vote.

Definition 2

Policy preferences of voter \(i \) are **single peaked** if:

If \(q'' \leq q' \leq q(\alpha^i) \) (or if \(q'' \geq q' \geq q(\alpha^i) \)) \(\Rightarrow \) \(W(q''; \alpha^i) \leq W(q'; \alpha^i) \).

Proposition 1

If all the voters have single-peaked preferences over a given ordering of policy alternatives, a Condorcet winner always exists and coincides with the median-ranked bliss point. This equilibrium is also unique.
Restricting Preferences

Definitions 3

- The preferences of voters in A satisfy the **single-crossing property** if:
 If \(q > q' \) and \(\alpha^i' > \alpha^i \) (or if \(q < q' \) and \(\alpha^i' < \alpha^i \)), then
 \[W(q; \alpha^i) \geq W(q'; \alpha^i) \implies W(q; \alpha^i') \geq W(q'; \alpha^i') \]

- Voters in A have **intermediate preferences** if:
 \[W(q; \alpha^i) = J(q) + K(\alpha^i)H(q) \], where \(K(\alpha^i) \) is monotonic in \(\alpha^i \).

Both these conditions guarantee existence and unicity of the equilibrium.

Example - Redistributive Distortionary Taxation

\[
\begin{align*}
 w^i &= c^i + V(x^i) \\
 c^i &= (1 - q)l^i + f, \text{ where } f \leq ql = qL(q) \text{ (gov. budget constraint)} \\
 1 - \alpha^i &\geq x^i + l^i \\
 \text{Optimal labor supply: } l^i &= 1 - \alpha - V_x^{-1}(1 - q) - (\alpha^i - \alpha). \\
 W^i(q; \alpha^i) &= L(q) + V(1 - L(q) - \alpha) - (1 - q)(\alpha^i - \alpha).
\end{align*}
\]
Nonexistence of a Condorcet Winner

Voters 1, 2 prefer q_b to q_c. Voters 1, 3 prefer q_a to q_b. Voters 2, 3 prefer q_c to q_a.
Electoral Competition

A Simple Model of Public Finance

A society inhabited by a continuum of citizens.

\[w^i = c^i + H(g) \] \hspace{1cm} (1)

\[c^i = (1 - \tau) y^i \] \hspace{1cm} (2)

Government budget constraint:

\[\tau y = g \] \hspace{1cm} (3)

\[\Rightarrow W^i(g) = (y - g) \frac{y^i}{y} + H(g) \]

\[\Rightarrow g^i = H_g^{-1}(\frac{y^i}{y}) \]

Normative benchmark: \[\int_i W^i(g) dF = W(g) \Rightarrow g^* = H_g^{-1}(1) \]
Electoral Competition

1. Candidates A, B commit to a policy g, in order to maximize the chance of winning p.

2. Elections are held.

3. The elected candidate implements his announced policy.

$$p_A = \begin{cases}
0 & \text{if } W^m(g_A) < W^m(g_B) \\
\frac{1}{2} & \text{if } W^m(g_A) = W^m(g_B) \\
1 & \text{if } W^m(g_A) > W^m(g_B)
\end{cases}$$

Trivially, the equilibrium will be: $g^m = H^{-1}_{g} \left(\frac{y^m}{y} \right) \implies \text{Suboptimality}$.
Candidates may differ in other dimensions unrelated to the policy (ideology, a second policy dimension in which they cannot make credible commitments).

Three groups: $R, M, P \ (y_R > y_M > y_P)$. Share of group j is α_j, such that $\sum_j \alpha_j = 1$.

Voter i of group J prefers candidate A if:

$$W^J(g_A) > W^J(g_B) + \sigma^{ij} + \delta$$

σ^{ij} and δ are distributed as $U\left[-\frac{1}{2\phi^j}, \frac{1}{2\phi^j}\right]$ and $U\left[-\frac{1}{2\psi}, \frac{1}{2\psi}\right]$.

Swing voter of group j: $W^J(g_A) = W^J(g_B) + \sigma^j + \delta$
Electoral Competition

Probabilistic Voting

1. The two candidates announce their electoral platforms: \(g_A, g_B \).
2. The actual value of \(\delta \) is realized and all the uncertainty is resolved.
3. Elections are held.
4. The elected candidate implements his announced policy.

Candidate A will maximize the following:

\[
\pi_A = \sum_J \alpha^j \phi^j \left(\sigma^j + \frac{1}{2\phi^j} \right)
\]

\[
p_A = \text{Prob} \left[\pi_A \geq \frac{1}{2} \right] = \frac{1}{2} + \frac{\psi}{\phi} \left[\sum_J \alpha^j \phi^j [W^j(g_A) - W^j(g_B)] \right]
\]

where \(\phi = \sum_J \alpha^j \phi^j \) is the average density across groups.

\[
FOC : \sum_J \alpha^j \phi^j H_g(g) = \frac{1}{y} \sum_J \alpha^j \phi^j y^j \implies g^S = H_g^{-1} \left(\frac{\sum_J \alpha^j \phi^j y^j}{\phi y} \right)
\]
Probabilistic Voting

Figure: Electorate in a Probabilistic Voting Model

Figure: Bliss Points of Different Swing Voters

T. Persson and G. Tabellini (Book - 2000; ChPolitical Economics - Explaining Economic Pc

November 14, 2012
Partisan Politicians

- **Policy Convergence** (binding commitments)
 Two exogenous candidates \((L, R)\), same timing as before.

 \[p_L = \begin{cases}
 0 & \text{if } W^m(g_L) < W^m(g_R) \\
 \frac{1}{2} & \text{if } W^m(g_L) = W^m(g_R) \\
 1 & \text{if } W^m(g_L) > W^m(g_R)
 \end{cases} \]

 Candidate \(L\) maximizes:
 \[E[W^L(g)] = p_L W^L(g_L) + (1 - p_L) W^L(g_R) \]

 \[\implies g_L = g_R = g^m \]

- **Policy Divergence** (no binding commitments)
 Only one credible announcement for \(L\): \(g_L = H_g^{-1}(\frac{y^L}{y})\)
 Candidate \(L\) wins if \(W^m(g_L) > W^m(g_R)\)
Partisan Politicians - Endogenous Candidates

1. Any citizen can enter as a candidate at a cost of ϵ.
2. Elections are held.
3. The elected candidate sets the policy g_P; if nobody runs, \bar{g} is implemented.

No policy commitment $\implies g_p = H^{-1}_g(y_P^y)$.

Unicity of equilibrium under: $W^m(g^m) - W^m(\bar{g}) \geq \epsilon$.

Otherwise, **infinitely many equilibria** under:

$$W^m(g_R) = W^m(g_L)$$

$$\frac{1}{2} [W^R(g_R) - W^R(g_L)] \geq \epsilon$$

$$\frac{1}{2} [W^L(g_L) - W^L(g_R)] \geq \epsilon$$
Can the voters discipline rent-seeking politicians?

Gov. budget constraint: \(\tau y = g + r \)

Candidates now maximize \(E(v_P) = p_P(R + \gamma r) \)

- Under efficient electoral competition:
 - Voters’ preferences: \(W^i(g) = (y - (g + r)) \frac{y^i}{y} + H(g) \)

\[
p_A = \begin{cases}
0 & \text{if } W^m(g_A) < W^m(g_B) \\
\frac{1}{2} & \text{if } W^m(g_A) = W^m(g_B) \\
1 & \text{if } W^m(g_A) > W^m(g_B)
\end{cases}
\]

\(g_A = g_B = g^m = H_g^{-1} \left(\frac{y^m}{y} \right) \)

\(r_A = r_B = r^m = 0 \)
Agency Problems

Under inefficient electoral competition (probabilistic voting):

\[p_A = \frac{1}{2} + \psi [W(g_A, r_A) - W(g_A, r_B)] \]

\[\frac{\partial [E(v_A)]}{\partial g_A} = (R + \gamma r_A) \frac{\partial p_A}{\partial g_A} = (R + \gamma r_A) \psi W_g(g_A, r_A) = 0 \]

\[\frac{\partial [E(v_A)]}{\partial r_A} = (R + \gamma r_A) \frac{\partial p_A}{\partial r_A} + p_A \gamma = -(R + \gamma r_A) \psi + \frac{1}{2} \leq 0 \]

\[\frac{\partial p_A}{\partial r_A} = \psi W_r = -\psi \]

\[\implies r = \max \left[0, \frac{1}{2\psi} - \frac{R}{\gamma} \right] \]

Positive rents in equilibrium.
We analyzed two different electoral competition models: Downsian model and probabilistic voting \rightarrow policy convergence.

Introducing partisan politicians it is possible to obtain policy divergence.

We analyzed the conflict of interests between voters and rent-seeking politicians. It is possible to obtain positive rents in equilibrium.

We abstained from agency problems in postelection politics models and from legislative bargaining.