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Abstract

In this paper we develop a framework to analyze stochastic dynamic opti-

mization problems in discrete time. We obtain new results about the existence

and uniqueness of solutions to the Bellman equation through a notion of Banach

contractions that generalizes known results for Banach and local contractions.

We apply the results obtained to an endogenous growth model and compare

our approach with other well known methods, such as the weighted contraction

method, countable local contractions and the Q-transform.

∗This paper is based on my working papers Rincón-Zapatero (2019, 2022). I acknowledge of

the referees and associate editors of this and of another journal for their insightful comments, that

significantly improved the exposition, leading to the current version. The usual caveat applies.
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1 Introduction

Stochastic dynamic programming incorporates uncertain events into a suitable framework

to find optimal policies. A useful approach for showing the existence of optimal stationary

plans is to prove that the dynamic programming equation admits a unique solution —the

value function— in a suitable space of functions. See Blackwell (1965), Maitra (1968),

Furukawa (1972), Bertsekas and Shreve (1978), Stokey et al. (1989), Hernández-Lerma and

Lasserre (1999), or Bäuerle and Rieder (2011), where this problem is analyzed in detail.

Also, there is a large amount of literature that applies stochastic dynamic programming to

economics. Brock and Mirman (1972), Mirman and Zilcha (1975), Donaldson and Mehra

(1983), Danthine and Donaldson (1981), Majumdar et al. (1989), Hopenhayn and Prescott

(1992) or Mitra (1998) are only a few of the many relevant papers that have contributed to

developing this field of research. Olson and Roy (2006) makes a review of the contributions

to the stochastic optimal growth model.

Many dynamic programs have both unbounded rewards and unbounded shocks, which

cannot be handled by the theory initiated by Blackwell (1965), based on the properties of

monotonicity and discount of the dynamic programming operator. In general, a problem

with unbounded utility cannot be transformed into an equivalent bounded problem, since

the optimal policies of both models will differ due to the dynamic structure. Also, imposing

artificial bounds to deal with a compact shock space may be incompatible with modelling

uncertainty by means of a first order stochastic process. Think, for instance, of the simple

random walk. It takes every integer with positive probability.

Weighted contractions, (Wessels (1977), Stokey et al. (1989), Boyd (1990), Hernández-

Lerma and Lasserre (1999), or Bäuerle and Rieder (2011)), countable local contractions,

(Matkowski and Nowak (2011), Jaśkiewicz and Nowak (2011), Balbus et al. (2018)) and the

recent Q–transform due to Ma et al. (2022) are useful approaches to deal with stochastic
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programs with unbounded rewards and shocks.

The weighted norm approach needs to identify a suitable bounding function. This is

not immediate in some models. Our paper provides sufficient conditions which do not

need a bounding function. In fact, we show a one-sector optimal growth model with linear

technology and strictly increasing and concave utility function which does not admit a

bounding function, but our approach applies.

Countable local contractions1 imposes, roughly speaking, that the conditional proba-

bility measures defined by the transition kernel have bounded support. This is due to the

need of constructing a countable family of increasing compact sets covering the state space.

We dispense with this assumption. The same growth model described above serves to show

that this method gives a more restricted condition to the discount factor.

The Q–transform consists in taking conditional expectations at both sides of the Bellman

equation that, in some models, converts an unbounded dynamic program into a bounded

one. This is a similar idea to what we do to obtain the Companion Operator Parameter L,

see Proposition 3.3 below, but the purpose is different, as we work with the original Bellman

operator. The Q–transform deals with a transformed operator. For unbounded from above

rewards, the Q–transform is the same that weighted contraction, but for unbounded from

below rewards it may take advantage of the averaging operation to obtain a bounded pro-

gram. We present a quadratic example where it is not possible to apply the Q–transform,

nor the countable contraction approach, but our results show that the Bellman equation

defines a contraction mapping.2

Our aim is to develop a new framework to study programs with unbounded rewards

1The local contraction approach generalizes the Banach contraction principle for function spaces

whose topology is defined by a family of seminorms. Hadz̆ić and Stanković (1970) is one of the first

papers dealing with this extension. Rincón-Zapatero and Rodŕıguez-Palmero (2003, 2007, 2009),

independently, introduced different hypotheses and applied the results to the deterministic Bellman

and Koopmans equations. Martins da Rocha and Vailakis (2010) extended the theory to the case of

an uncountable family of seminorms.
2It is worth noting that the results in Ma et al. (2022) and Jaśkiewicz and Nowak (2011) may be

applied to unbounded from below programs where the utility function may take the value −∞ on

the state space; this is beyond the scope of this paper.
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and/or unbounded shocks by extending the local contraction method developed in Rincón-

Zapatero and Rodŕıguez-Palmero (2003, 2009) and Martins da Rocha and Vailakis (2010)

for deterministic programs to the stochastic setting, while preserving the monotonicity of

the Bellman operator. To this end, we define a suitable space of functions and a suitable

family of seminorms. The seminorms combine the usual supremum norm in the endogenous

variables with an L1 norm in the exogenous variables, and define a complete space of

functions — a Carathéodory function space —.

To work within this framework, we need to extend the notion of contraction mapping, by

considering the contraction parameter(s) in the local contraction definition as an operator

acting on the family of seminorms. This operator is what we call the companion operator

associated with the contraction mapping3. The theory we develop is quite general and

could be applied to other equilibrium problems in economics beyond stochastic dynamic

programming.

Our framework allows us to relax continuity of the period utility function with respect

to the exogenous variable. This is important since Feller continuity of the Markov chain

is not enough to preserve continuity when the space of shocks is not compact. Also, the

L1 type norm defined on shocks makes it possible to obtain less restrictive bounds on the

discount factor than with other known methods, as it is demonstrated in the paper.

Our approach is designed for problems where utility functions may be unbounded from

below, but not taking the value −∞ on the state space. This is restrictive, as it takes out

of consideration important problems in economics. Nevertheless, we still get new insights

in better–behaved models.4

3This idea is not new. Kozlov et al. (2010) developed a fixed point theorem in locally convex

spaces whose topology is given by a family of seminorms. However, the results obtained depend on

the companion contraction parameter operator being linear, precluding application to the dynamic

programming equation, since it genuinely demands a nonlinear companion contraction parameter,

due to the presence of a maximization operation in the definition of the Bellman equation.
4To adapt our results to this class of models it may be promising to work with pseudometrics,

instead of seminorms, as in Rincón-Zapatero and Rodŕıguez-Palmero (2003); this paper does not

explore this issue. Also, the theory we develop applies only to problems where uncertainty is exoge-

nous. However, to extend the approach to models where actions affect uncertainty is possible, and
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The paper is organized as follows. Section 2 develops a theory of contraction mappings

on topological spaces whose topology is given by a family of pseudometrics that makes it

Hausdorff and sequentially complete. The contraction parameter is given by an operator

acting on pseudometrics. Section 3 applies the results of Section 2 to the stochastic dynamic

programming equation for models with shocks driven by an exogenous Markov chain. The

main assumption used to obtain our results states that today’s conditional expectation of

the utility function is bounded by the present value of tomorrow’s conditional expectation,

in such a way that the resulting infinite sum of all expected values is finite. In Section

4 we study a model of endogenous growth, allowing for correlated and unbounded shocks.

Section 5 makes a comparison of our results with those obtained with weighted contractions,

countable local contractions, and the Q–transform addressed above. Section 6 concludes.

Appendixes A and B contain the proofs not in the main text of Section 2 and 3, respectively.

Appendix C provides a pure currency model where the value function is discontinuous with

respect to the shock variable, showing in a simple economic model the well known fact that

Feller continuity of the Markov chain is not enough to preserve continuity when the shock

space is not compact.

2 A general class of Banach contractions

Let (E,D) be a topological space, where E is a set whose topology is generated by a

saturated family of pseudometrics D = {da}a∈A, with A an arbitrary index set. Since the

family D is saturated, the topology it generates is Hausdorff5. We suppose that (E,D) is

in fact Rincón-Zapatero (2022) drafts how it could be done.
5A pseudometric d : E×E → R+ is a function satisfying d(x, y) ≥ 0, d(x, x) = 0, d(x, y) = d(y, x)

and d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ E, but d(x, y) = 0 does not imply x = y. The family

D of pseudometrics is saturated if da(x, y) = 0 for all a ∈ A implies x = y. Sometimes, the

pseudometrics are defined through seminorms pa, a ∈ A, by da(x, y) = pa(x− y), where now E is a

real vector space. A seminorm is a function p : E → R+ that satisfies all the axioms to be a norm,

except that p(x) = 0 does not imply that x is the null vector of E. If the family of seminorms is

saturated, then the topology defined by the family is Hausdorff and the space E is a locally convex

space. See Willard (1970) for further details.
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sequentially complete: if {xn} is a sequence in E which is Cauchy with respect to all da ∈ D,

that is, if da(xn, xm) → 0 as n,m → ∞, then there is x ∈ E such that da(xn, x) → 0 as

n→∞ for all a ∈ A.

Given a sequentially complete subset F ⊆ E, we study the existence and uniqueness of

a fixed point of a mapping T : F → E.

Let RA be the set of functions d : A→ R+ and let RA+ be the non–negative cone of RA.

On this set we consider the order it generates, that is, for two elements d, d′ ∈ RA+, we say

that d ≤ d′ if and only if d(a) ≤ d′(a) for all a ∈ A. The family D can be embedded into

RA+, since that, for x, y ∈ E given, the mapping a 7→ da(x, y) defines a function in RA+, that

we denote dx,y(a) := da(x, y). In general, for a given subset F ⊆ E, we let D(F ) be the set

of functions in RA+ which are generated by pairs x, y ∈ F , that is

D(F ) := {d : A→ R+ : d = dx,y for some x, y ∈ F}.

Definition 2.1. Let F ⊆ E. The mapping T : F → E is an L-local contraction on F with

contraction operator parameter L (COP, for short), if there are a set C ⊆ RA+ such that

D(F ) ⊆ C, and an operator L : C → RA+, such that

da(Tx, Ty) ≤ (Ldx,y)(a),

for all x, y ∈ F and for all a ∈ A.

Note that the inequality above can be rewritten dTx,Ty ≤ Ldx,y, that is, as an order

relation in the space RA+. The definition of L–contractions for mappings T : F −→ E, not

imposing T : F −→ F , will facilitate the definition of the COP parameter L of the Bellman

operator in Section 3. Of course, the property T : F −→ F is fundamental for Theorem 3.5

below, and will be checked carefully in Section 3.

The following two examples show that the operator L is a generalization of the concept

of contraction parameter of a (local) contraction mapping.

Example 2.2 (Banach contractions). In the classical Banach’s Theorem, E is endowed

with a complete metric d, so the index set A is a singleton, D = {d}, and T is a contraction

of constant parameter β, with 0 < β < 1: d(Tx, Ty) ≤ βd(x, y), for any x, y ∈ E. The

COP is L = βI, where I is the identity map in R+.
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A generalization of the Banach contraction concept is provided in Wong (1968), where

it is considered T : E −→ E for which there is a function L : R+ −→ R+ satisfying

d(Tx, Ty) ≤ L(d(x, y)), (2.1)

for all x, y ∈ E. Note that our definition is an extension of this concept to topological spaces

whose topology is given by a family of pseudometrics.

Example 2.3 (k–local contractions). Suppose that A = N is countable. In Rincón-Zapatero

and Rodŕıguez-Palmero (2003, 2007), we introduced the concept of k–local contraction in

the study of the deterministic Bellman and Koopmans equations, respectively. A k–local

contraction on F , k = 0, 1, 2, . . ., is a mapping T : F ⊆ E −→ E satisfying

dj(Tx, Ty) ≤ βjdj+k(x, y)

for some fixed sequence of numbers {βj}j∈N with 0 < βj < 1, and for all x, y ∈ F . If we let

s = RN be the set of real sequences and s+ be the subset of s of nonnegative sequences, then

the COP associated with T is the linear operator L : s+ −→ s+ acting on sequences given

by

L(d1, d2, . . . , dj , . . .) = (β1d1+k, β2d2+k, . . . , βjdj+k, . . .),

where k ≥ 0 is fixed.

Suppose that A is uncountable and let a mapping α : A −→ A. Martins da Rocha

and Vailakis (2010) worked with the following generalization of the countable class above:

T : E −→ E is an α-local contraction if there exists a function β : A −→ [0, 1) such that

da(Tx, Ty) ≤ β(a)dα(a)(x, y).

The COP L acts on functions d : A −→ R+ by translation in the independent variable by

α, and a multiplication by β, that is, (Ld)(a) = β(a)d(α(a)). It turns out that L is also a

linear mapping, as in the countable case above.

In what follows, we use the standard notation for successive iterations of the operators T

and L. For instance, L0 is the identity operator on C, L1 = L, and for t ≥ 2, Lt = L◦Lt−1.

We impose to C, L and T the assumptions (I) to (VI) listed below. The assumptions (I) to
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(V) concern the behavior of L on the set C. Assumption (VI) links directly the operators

T and L.

(I) D(F ) ⊆ C (hence the null function 0 ∈ C). For all d, d′ ∈ C, the sum d+d′ ∈ C, and

any bounded subset of C is countable chain complete6. Moreover, if d′ ∈ C, d ∈ RA+
and d ≤ d′, then d ∈ C.

(II) L(C) ⊆ C; L0 = 0.

(III) L is monotone: for all d, d′ ∈ C with d ≤ d′, Ld ≤ Ld′.

(IV) L is subadditive: for any d, d′ ∈ C

L(d+ d′) ≤ Ld+ Ld′.

(V) L is upper semicontinuous sup-preserving7: for any bounded countable chain in C,

d1 ≤ d2 ≤ · · · ≤ dt ≤ · · · ,

L sup
t
dt ≤ sup

t
Ldt.

(VI) There are x0 ∈ F and r0 ∈ C with da(x0, Tx0) ≤ r0(a) and

R0(a) :=

∞∑
t=0

Ltr0(a) <∞,

for all a ∈ A.

Since Ltr0 ∈ C, for all t = 0, 1, . . ., and the countable chain {r0, r0 +Lr0, . . . , r0 +Lr0 +

· · ·+ Ltr0, · · · } is bounded in C by (VI), R0 is in C by assumption (I).

For F ⊆ E, x0 ∈ F , and m ∈ RA+, let the set

VF (x0,m) = {x ∈ F : da(x0, x) ≤ m(a), ∀a ∈ A}. (2.2)

6A subset S ⊆ C is bounded with respect to the order inherited from RA if there is d′ ∈ C such

that d ≤ d′ for all d ∈ S. The bounded subset S is countably chain complete if for any countably

chain d1 ≤ d2 ≤ · · · dt ≤ · · · in S, supt∈N dt ∈ S.
7For instance, the sup-preserving property, L(supt dt) = supt Ldt, plays a prominent role in the

Fixed Point Theorem of Kantorovich-Tarski. In our context, it can be weakened to a kind of upper

semicontinuity.
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When E is a metric space, that is, when A is a singleton, the pseudometric is a metric, and

VF (x0,m) is simply the intersection with F of the closed ball centered at x0 and radius m.

Let N0 := {0} ∪ N and set J := A × N0. Consider next the family of pseudometrics

∆ := (δj)j∈J on F where

δa,t(x, y) = Lt(dx,ya ).

Assumptions (I)-(IV) imply that δj is a pseudometric while a straightforward computation

shows that

δa,t(Tx, Ty) = Lt(da(Tx, Ty) ≤ Lt+1)da(x, y)) = δa,t+1(Tx, Ty).

Now let the map r : J → J be defined by r(a, t) = (a, t+ 1). Then T is a local contraction

with respect to (∆, r).8

Theorem 2.4. Let (E,D) be a Hausdorff and sequentially complete topological space. Let

T : F → F be an L-local contraction on the sequentially complete subset F ⊆ E and let

x0 ∈ F be such that (I)–(VI) hold true. Suppose that the family of pseudometrics ∆ defined

above is saturated and the space (E,∆) is complete. Then there is a unique fixed point

x∗ ∈ VF (x0, R0) of T , which is the limit of any iterating sequence yt+1 = Tyt, t = 0, 1, 2, . . .,

where y0 = x ∈ VF (x0, R0) is arbitrary.

Proof. The result follows from (Martins da Rocha and Vailakis, 2010, Theorem 2.1), with

K = VF (x0, R0). See Lemma A.1 in Appendix A.

8This construction was shown to the author by a referee. It allows us to apply directly (Martins

da Rocha and Vailakis, 2010, Theorem 2.1) to obtain existence and uniqueness of the fixed point.

However, in some cases, the family ∆ could be not saturated or not defining a sequentially complete

topology. An example within the dynamic programming class is as follows. Suppose a deterministic

problem with X = R+ and Γ(x) = {x + 1}. Then, for all compact sets K of X and all functions

p = pf , with f continuous, Lp(K) = βmaxx∈K p(Γ(x)) = βpK+1 and Ltp(K) = βtpK+t, where

K + t = {x + t : x ∈ K}, for all t = 1, 2, . . .. It is clear that {δK,t} is not a saturated family of

seminorms. Supposing that f and g are continuous functions on R+, such that f 6= g in [0, 1] and

f = g in (1,∞); yet, δK,t(f − g) = βtpK+t(f − g) = 0 for all K and all t = 1, 2, . . .. A direct

approach, without the use of ∆, is shown in Rincón-Zapatero (2022). The applications we study in

further sections have ∆ both saturated and complete.
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The next result is a corollary to the above theorem that provides conditions for the

uniqueness of the fixed point in F and not only in VF (x0, R0).

When T is indeed an L-local contraction on the whole E, this result provides global

uniqueness of the fixed point on E.

Corollary 2.5. Let (E,D) be a Hausdorff, sequentially complete space. Let T : F → F be

an L-local contraction on the sequentially complete subset F ⊆ E and let x0 ∈ F be such

that (I)–(VI) hold true. Suppose that for all x ∈ F there exists r0 ∈ C satisfying (VI) such

that x ∈ VF (x0, R0), where R0 =
∑∞

t=0 L
tr0. Then there is a unique fixed point of T in F

and convergence to the fixed point of successive iterations of T is attained from any x ∈ F .

Next we establish a useful sufficient condition for (VI). Note that the Bellman operator

satisfies the extra condition imposed on L.

Proposition 2.6. Let (E,D) be a Hausdorff and sequentially complete topological space.

Let T : F −→ F be an L–local contraction on F ⊆ E, with COP L satisfying (I) to

(V) and L(αd) ≤ αLd, for all d ∈ C, for all α ∈ [0, 1]. Let x0 ∈ F , for which there is

t0 ∈ {0, 1, 2, . . .}, s ∈ C, and θ ∈ [0, 1) such that

Lt0d0 ≤ s and Ls ≤ θs,

where d0(a) = da(x0, Tx0). Then (VI) holds with r0 = d0.

3 Stochastic Dynamic Programming and Bellman

Equation

Consider a dynamic programming model (X,Z,Γ, Q, U, β), where X×Z is the set of possible

states of the system, Γ is a correspondence that assigns a nonempty set Γ(x, z) of feasible

actions to each state (x, z) and Q is the transition function, which associates a conditional

probability distribution Q(z, ·) on Z to each z ∈ Z. Hence, the law of motion is assumed to

be a first-order Markov process, which could be degenerate, giving rise to a deterministic
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model. We will use indistinctly the notation Qz(·) = Q(z, ·); the function U is the one–

period return function, defined on the graph of Γ, Ω = {(x, y, z) : (x, z) ∈ X × Z, y ∈

Γ(x, z)}, and β is a discount factor.

Starting at some state (x0, z0), the agent chooses an action x1 ∈ Γ(x0, z0), obtaining

a return of U(x0, x1, z0) and the system moves to the next state (x1, z1), which is drawn

according to the probability distribution Q(z0, ·). Iteration of this process yields a random

sequence (x0, z0, x1, z1, . . .) and a total discounted return
∑∞

t=0 β
tU(xt, xt+1, zt). A history

of length t is zt = (z0, z1, . . . , zt). Let Zt be the set of all histories of length t, and let

Zt = Z × · · · × Z (t times), where Z is the Borel σ-algebra of Z. A (feasible) plan π

is a constant value π0 ∈ X and a sequence of measurable functions πt : Zt −→ X, such

that πt(z
t) ∈ Γ(πt−1(zt−1), zt), for all t = 1, 2, . . .. Denote by Π(x0, z0) the set of all feasible

plans starting at the state (x0, z0). Any feasible plan π ∈ Π(x0, z0), along with the transition

function Q, defines a distribution Pπ,(x0,z0) on all possible futures of the system {(xt, zt)}∞t=1,

as well as the expected total discounted utility

u(π, x0, z0) = Eπ,(x0,z0)

( ∞∑
t=0

βtU(xt, xt+1, zt)

)
.

The expectation Eπ,(x0,z0) is taken with respect to the distribution Pπ,(x0,z0). The problem

is then to find a plan π ∈ Π(x0, z0) such that u(π, (x0, z0)) ≥ u(π̂, (x0, z0)) for all π̂ ∈

Π(x0, z0), for all (x0, z0) ∈ X × Z. The value function of the problem is v(x0, z0) =

supπ∈Π(x0,z0) u(π, (x0, z0)).

Consider the functional equation corresponding to the above dynamic programming

problem as stated in Stokey et al. (1989). For x ∈ X, z ∈ Z

v(x, z) = sup
y∈Γ(x,z)

{
U(x, y, z) + β

∫
Z
v(y, z′)Q(z, dz′)

}
. (3.1)

A solution of the Bellman equation satisfying additional assumptions is the value func-

tion of the infinite programming problem. This is the content of Theorem 3.5 below, whose

proof needs the notion of the probability measure µt defined on the sequence space of shocks

(Zt,Zt) for finite t = 1, 2, . . ., where

(Zt,Zt) = (Z × · · · × Z,Z × · · · × Z) (t times)

11



and where Z is defined in (B1) below. For any rectangle B = A1 × · · · × At ∈ Zt, µt is

defined by

µt(z0, B) =

∫
A1

. . .

∫
At−1

∫
At

Qzt−1(dzt)Qzt−2(dzt−1) · · ·Qz0(dz1),

and by the Hahn Extension Theorems, µt(z0, ·) has a unique extension to a probability

measure on all of Zt. We omit the details, which can be found in Stokey et al. (1989),

Section 8.2, whose presentation we follow closely.

Defining the Bellman operator in a suitable function space E, such that for f ∈ E

(Tf)(x, z) = sup
y∈Γ(x,z)

{
U(x, y, z) + β

∫
Z
f(y, z′)Q(z, dz′)

}
,

the Bellman functional equation (3.1) is a fixed point problem for T . This fixed point

problem is completely understood for the case where U is bounded. There are now also

different approaches for some special cases for unbounded U and unbounded shock space.

9 It is worth mentioning the constant returns to scale model in Stokey et al. (1989) and in

Álvarez and Stokey (1998), the logarithmic and the quadratic parametric examples analyzed

in Stokey et al. (1989), and the weighted norm approach in Boyd (1990), Hernández-Lerma

and Lasserre (1999) or Bäuerle and Rieder (2011). Matkowski and Nowak (2011) and

Jaśkiewicz and Nowak (2011) make a nice translation of the approach initiated by Rincón-

Zapatero and Rodŕıguez-Palmero (2003) for deterministic programs to the stochastic case.

We now impose the standing hypotheses. Most of them are taken from Stokey et al.

(1989), but there are essential differences, as we admit an unbounded utility U and an

unbounded shock space Z.

(B1) X ⊆ Rl, Z ⊆ Rk are Borel sets, with Borel σ-algebra X and Z, respectively. The set

X is endowed with the Euclidean topology.

(B2) 0 < β < 1.

(B3) Q : Z ×Z → [0, 1] satisfies

9Allowing for a non–compact shock space is important for a qualitative analysis of models, see for

instance Binder and Pesaran (1999) and Stachurski (2002), and more recently, Ma and Stachurski

(2019).
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(a) for each z ∈ Z, Q(z, ·) is a probability measure on (Z,Z); and

(b) for each B ∈ Z, Q(·, B) is a Borel measurable function.

(B4) The correspondence Γ : X × Z −→ 2X is nonempty, compact-valued and continuous;

its graph is denoted Ω.

(B5) U : Ω −→ R is a Carathéodory function, that is, it satisfies

(a) for each (x, y) ∈ X ×X, the function of z

U(x, y, ·) : {z ∈ Z : (x, y, z) ∈ Ω} −→ R,

is Borel measurable;

(b) for each z ∈ Z, the function of (x, y)

U(·, ·, z) : {(x, y) ∈ X ×X : (x, y, z) ∈ Ω} −→ R,

is continuous.

The reason for working with Carathéodory functions instead of continuous functions in

the three variables (x, y, z) is twofold. On the one hand, the Markov operator

(Mf)(x, z) :=

∫
Z
f(x, z′)Q(z, dz′), (3.2)

does not preserve continuity of f , if f is continuous but not bounded, as the simple cur-

rency model in Appendix C shows. Our approach dispenses with the assumption of strong

Feller continuity of Q, which means that the mapping z 7→
∫
Z f(z′)Qz(dz

′) is continuous

for all bounded and measurable f . Continuity plays a major role in the application of the

Banach Contraction Theorem and the weighted approach, see e.g. Stokey et al. (1989),

Boyd (1990), Hernández-Lerma and Lasserre (1999), or Bäuerle and Rieder (2011). On

the other hand, the Bellman operator is well defined for the class of Carathéodory func-

tions in the unbounded case, while working with the supremum norm is not possible. A

direct attack of the Bellman equation in the space of (x, z)–continuous functions does not

work for unbounded functions and/or unbounded shock space: known theorems on local
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contractions—with a countable or uncountable index set —are not suitable, due to the av-

eraging operation involved in the computation of conditional expectations. For this reason

we are going to use L1-type seminorms, whose precise definition is given below.

We now describe the function space. For each z ∈ Z, let L1(Z,Z, Qz) be the space

of Borel measurable functions10 g : Z −→ R such that
∫
Z |g(z′)|Qz(dz′) < ∞. In what

follows, we let K be the family of all compact subsets of X. Consider the space E :=

L1(Z;C(X)), formed by Carathéodory functions f : X × Z −→ R such that the function

z′ 7→ maxx∈K |fx(z′)| is in L1(Z,Z, Qz), for all compact sets K ∈ K, and all z ∈ Z. Define

pK,z(f) :=

∫
Z

max
x∈K
|f(x, z′)|Qz(dz′).

The proof of the following result can be found in Rincón-Zapatero (2022).

Proposition 3.1. Suppose that the family P := {pK,z}K∈K,z∈Z is saturated. Then the

space E = L1(Z;C(X)) with the topology generated by P is a locally convex complete space.

In particular, this proposition states that E is sequentially complete. In all the appli-

cations we study in further sections, the family P is saturated.

In the notation of Section 2, the index set of the family of seminorms is A = K×Z. Given

a solution f ∈ L1(Z;C(X)) of (3.1), define the policy correspondence Gf : X ×Z → 2X by

Gf (x, z) = {y ∈ Γ(x, z) : f(x, z) = U(x, y, z) + βMf(y, z)},

where M was defined in (3.2). This is the optimal policy correspondence, denoted simply

by Γ∗, when f is the value function, v.

Remember from Section 2, that for a subset F ⊆ E, the set D(F ) is in this context

D(F ) = {p : K × Z → R+ : p(K, z) = pK,z(f) for some f ∈ F}.

Notation 3.2. Where needed, we will use pf to denote the element of D(F ) which is

obtained from f ∈ F , that is pf (K, z) = pK,z(f). Also

ψ(x, z) ≡ max
y∈Γ(x,z)

U(x, y, z) = T0(x, z)

10It is well known that L1(Z,Z, Qz) consists of equivalence classes rather than functions, identi-

fying functions that are equal Qz–almost everywhere.
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while, for p : K × Z 7−→ R+, the function p[Γ] : X × Z 7−→ R+ is defined by p[Γ](x, z) =

p(Γ(x, z), z), that is, it is the function of (x, z) obtained through p, when the compact sets

K equal Γ(x, z), for x ∈ X, z ∈ Z.

The next result shows that T is an L-local contraction, and gives the expression of

L: Given p : K × Z 7→ R+ for which p[Γ] ∈ L1(Z;C(X)), the operator L computes the

seminorm of the function p[Γ], that is, (Lp)(K, z) = βpK,z(p[Γ]). Note that L is nonlinear.

The expanded definition of the operator L is the expression (3.3) below.

Proposition 3.3. Let the Bellman operator T : F −→ E, where F ⊆ L1(Z;C(X)), such

that for all p ∈ D(F ), p[Γ] ∈ L1(Z;C(X)). Then, T is an L-local contraction on F with

COP L : D(F ) −→ RK×Z+ given by

(Lp)(K, z) = β

∫
Z

max
x∈K

p(Γ(x, z′), z′)Qz(dz
′), (3.3)

for all K ∈ K and z ∈ Z.

Proof. Following Blackwell (1965), we exploit the fact that T is monotone, in conjunction

with the properties of the seminorms pK,z. Let f, g ∈ E and let x ∈ X, K ∈ K and z ∈ Z.

Let y ∈ Γ(x, z) and z′ ∈ Z arbitrary. Then f(y, z′) ≤ g(y, z′) + |f(y, z′) − g(y, z′)| implies

f(y, z′) ≤ g(y, z′) + maxy∈Γ(x,z) |f(y, z′)− g(y, z′)| and then, by monotonicity and linearity

of the integral,∫
Z
f(y, z′)Qz(dz

′) ≤
∫
Z
g(y, z′)Qz(dz

′)

+

∫
Z

max
y∈Γ(x,z)

|f(y, z′)− g(y, z′)|Qz(dz′).

We are allowed to take the integral by Lemma B.1. The inequality is maintained after

multiplying by β and adding U(x, y, z) to both sides. Then, by taking the maximum in

y ∈ Γ(x, z) to both sides, we have

(Tf)(x, z) ≤ (Tg)(x, z) + β max
y∈Γ(x,z)

∫
Z

max
y∈Γ(x,z)

|f(y, z′)− g(y, z′)|Qz(dz′)

= (Tg)(x, z) + β

∫
Z

max
y∈Γ(x,z)

|f(y, z′)− g(y, z′)|Qz(dz′)

= (Tg)(x, z) + βpΓ(x,z),z(f − g).
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Exchanging the roles of f and g, we have

|(Tf)(x, z)− (Tg)(x, z)| ≤ βpΓ(x,z),z(f − g). (3.4)

It is convenient to write this inequality with the dummy variable z′ instead of z. Now,

taking the maximum in x ∈ K and averaging with respect to the measure Qz, we obtain∫
Z

max
x∈K
|(Tf)(x, z′)− (Tg)(x, z′)|Qz(dz′) ≤ β

∫
Z

max
x∈K

pf−g(Γ(x, z′), z′)Qz(dz
′).

Taking the maximum with respect to x ∈ K in (3.4), we get pK,z(Tf−Tg) ≤ (Lpf−g)(K, z),

for all K ∈ K, z ∈ Z, where L is the operator defined in (3.3).

One of the difficulties in applying contraction techniques to the dynamic programming

equation, when the return function and/or the space of shocks is unbounded, is the selection

of a suitable space of functions where the Bellman operator is a selfmap. Assumption (B6)

below provides a scheme to construct such a space along the lines of assumption (VI) in

Section 2. This is in the same spirit of Assumption 9.3 in Stokey et al. (1989), pp. 248-249.

This assumption is not about bounding the one-shot utility function U along any policy

path by a function that depends only on time and the initial state, but about bounding its

expected value with respect to the initial state. This is an important difference, as it allows

us to deal with an unbounded space of shocks.

(B6) There is a collection of nonnegative functions {lt}∞t=0 ∈ L1(Z;C(X)), such that for all

x ∈ X, for all z ∈ Z

l0(x, z) ≥ max(ψ(x, z), 0);

lt+1(x, z) ≥ β
∫
Z

maxy∈Γ(x,z) lt(y, z
′)Qz(dz

′), for all t = 0, 1, . . .,

and the series w :=
∑∞

t=0 lt is unconditionally convergent, that is,

R0(K, z) :=
∞∑
t=0

pK,z(lt) <∞,

for all K ∈ K, for all z ∈ Z.
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Now we consider a suitable set C where L is defined.

C =
{
p : K × Z 7−→ R+ : p(K, z) ≤ cR0(K, z) for some c > 0,

and p[Γ] ∈ L1(Z,C(X))
}
.

(3.5)

As it is proved in Lemma B.4, C is not empty, as it contains the images of V (0, R0) by the

family of seminorms P.

Theorem 3.5 below is a fixed point theorem for the Bellman operator. We state a

previous lemma.

Lemma 3.4. Let assumptions (B1) to (B6) hold. Then T and L with C defined in (3.5),

satisfy (I) to (VI).

Theorem 3.5. Let assumptions (B1) to (B6) hold. The following is true.

(a) The Bellman equation admits a unique solution v∗ in V (0, R0) and for all v0 ∈ V (0, R0),

Tnv0 → v∗ as n→∞, that is, pK,z(T
nv0 − v∗)→ 0, for all K ∈ K and z ∈ Z.

(b) The fixed point v∗ coincides with the value function, v = v∗ and for all z ∈ Z the

optimal policy correspondence Γ∗(·, z) : X → 2X is non-empty, compact valued and

upper hemicontinuous.

Proof. (a) T is an L–contraction by Proposition 3.3 and all the assumptions of Theorem

2.4 hold true by Lemma 3.4. Hence T admits a unique fixed point v∗ in V (0, R0) and the

successive iterations of T starting at any v0 ∈ V (0, R0) converges to the v∗ as n → ∞ in

the topology generated by the seminorms.

(b) To see that v∗ is the value function of the problem, we invoke Theorem 9.2 in Stokey

et al. (1989). Recall that, for any function F that is µt(z0, ·)-integrable, its conditional

expectation can be expressed as

Ez0(F ) :=

∫
Zt
F (zt)µt(z0, dz

t)

=

∫
Zt−1

[∫
Z
F (zt−1, zt)Qzt−1(dzt)

]
µt−1(z0, dz

t−1)

=

∫
Z

[∫
Zt−1

F (z1, z
t
2)µt−1(z1, dz

t
2)

]
Qz0(dz1).
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The assumptions of Theorem 9.2 in Stokey et al. (1989) are: (i) Γ is non-empty valued,

with a measurable graph and admits a measurable selection; (ii) for each (x0, z0) and each

feasible plan π from (x0, z0), U(πt−1(zt−1), πt(z
t), zt) is µt(z0, ·)-integrable, t = 1, 2, . . ., and

the limit

U(x0, π0, z0) + lim
n→∞

n∑
t=1

∫
Zt
βtU(πt−1(zt−1), πt(z

t), zt)µ
t(z0, dz

t) (3.6)

exists; and (iii) limt→∞
∫
Zt β

tv∗(πt−1(zt−1), zt)µ
t(z0, dz

t) = 0.

(i) is implied by (B5) and (ii) is implied by (B6), since |U(πt−1(zt−1), πt(z
t), zt)| is

clearly measurable, given that U is a Carathéodory function. Moreover, since l0 in (B6) is

in Ca(X × Z), we can apply Fubini’s Theorem so that l0(π1(z1), z2) is µ2(z0, ·)-integrable

and ∫
Z2

l0(π1(z1), z2)µ2(z0, dz
2) =

∫
Z1

(∫
Z
l0(π1(z1), z2)Qz1(dz2)

)
µ1(z0, dz

1)

≤
∫
Z1

1

β
l1(π0(z0), z1)µ1(z0, dz

1)

≤ 1

β2
l2(x0, z0).

Both inequalities are due to assumption (B6). By induction, we get that l(πt−1(zt−1), zt) is

µt(z0, ·)–integrable and∫
Zt
l0(πt−1(zt−1), zt)µ

t(z0, dz
t) ≤ 1

βt
lt(x0, z0).

Since |U(πt−1(zt−1), πt(z
t), zt)| ≤ l0(πt−1(zt−1), zt), the first part of (ii) is proved. Indeed,

this estimate provides the bound

|U(x0, π0(z0), z0)|+
n∑
t=1

∫
Zt
βt|U(πt−1(zt−1), πt(z

t), zt)|µt(z0, dz
t)

≤ |U(x0, π0(z0), z0)|+
n∑
t=1

lt(x0, z0) ≤ w0(x0, z0),

hence the second part of (ii) also holds, that is, the limit (3.6) is finite. Moreover, since

the above inequality holds for any π ∈ Π(x0, z0), it shows that the n–th iteration of T

on the null function as the initial seed satisfies |Tn0(x0, z0)| ≤ w0(x0, z0). Hence, since∫
Z |T

n0(x0, z1)− v∗(x0, z1)|Qz0(dz1) tends to 0 as n→∞, by part (a) above, we obtain the

bound ∫
Z
|v∗(x0, z1)|Qz0(dz1) ≤

∫
Z
w0(x0, z1)Qz0(dz1). (3.7)
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This inequality will be used to show (iii). First, we claim that for any t, for any π ∈ Π(x0, z0),∫
Zt
βtw0(πt−1(zt−1), zt)µ

t(z0, dz
t) ≤

∞∑
s=t

ls(x0, z0).

To prove it, we employ mathematical induction. Let t = 1. Then, by assumption (B6)∫
Z
βw0(π0(z0), z1)µ1(z0, dz

1) =

∫
Z
β

∞∑
t=0

lt(π0(z0), z1)Qz0(dz1)

=
∞∑
t=0

β

∫
Z
lt(π0(z0), z1)Qz0(dz1)

≤
∞∑
t=0

lt+1(x0, z0).

The exchange of the integral and infinite sum is possible by the Monotone Convergence

Theorem. Suppose that the property is true for t and let us prove it for t+ 1. Then it will

hold for any t. Note∫
Zt+1

βt+1w0(πt(z
t), zt+1)µt+1(z0, dz

t+1)

=

∫
Z

(
β

∫
Zt
βtw0(πt−1(zt−1), zt)µ

t(z0, dz
t)

)
Qz0(dz1)

≤
∫
Z
β

∞∑
s=t

ls(π0(z0), z1)Qz0(dz1)

≤
∞∑

s=t+1

ls(x0, z0),

again by the Monotone Convergence Theorem, and where we have used Fubini’s Theorem

and the induction hypothesis. This and (3.7) imply (iii), since the series w0 converges.

Thus, v∗ is the value function. The claims about Γ∗ are immediate from the Theorem of

the Maximum of Bergé and the Measurable Maximum Theorem, see Aliprantis and Border

(1999).

The following result provides a sufficient condition for (B6).

Proposition 3.6. Let assumptions (B1) to (B5) hold. Suppose that there is l0 ∈ L1(Z;C(X))

with |ψ| ≤ l, α ≥ 0 such that αβ < 1, and∫
Z

max
y∈Γ(x,z)

l0(y, z′)Qz(dz
′) ≤ αl0(x, z),

for all x ∈ X, z ∈ Z. Then (B6) holds, with R0(K, z) = pK,z(l0)/(1− αβ).
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Proof. Choose lt = (αβ)tl0, for t = 0, 1, . . .. Then

β

∫
Z

max
y∈Γ(x,z)

lt(y, z
′)Qz(dz

′) = β(αβ)t
∫
Z

max
y∈Γ(x,z)

l0(y, z′)Qz(dz
′)

≤ (αβ)t+1l0(x, z) = lt+1(x0, z0).

Hence, w(x0, z0) = l0(x0, z0)/(1− αβ) and R0(K, z) = pK,z(l0)/(1− αβ), for K ∈ K and

z ∈ Z.

3.1 Sharper Estimates

Many interesting problems have utility functions which are unbounded from below11 In this

case, the estimates given in assumption (B6) are not efficient. A generalization of (B6)

allows us to construct sharper estimates in the form of an order interval of functions that

is mapped into itself by the operator T .

(B6)’ There are two collections of functions kt, lt : X × Z → R, with kt, lt ∈ L1(Z;C(X)),

for all t = 0, 1, . . ., satisfying that for all x ∈ X, all z ∈ Z, there exists y(x, z) ∈ Γ(x, z)

such that

k0(x, z) ≤ min(U(x, y(x, z), z), 0);

kt+1(x, z) ≤ β
∫
Z
kt(y(x, z), z′)Qz(dz

′);

l0(x, z) ≥ max(ψ(x, z), 0);

lt+1(x, z) ≥
∫
Z

max
y∈Γ(x,z)

lt(y, z
′)Qz(dz

′), all t = 1, 2, . . .;

and the series

ut(x, z) :=
∞∑
s=t

ks(x, z) and wt(x, z) :=
∞∑
s=t

ls(x, z)

are unconditionally convergent, for all t = 0, 1, 2, . . ..

11We refer here to problems where the utility function is not bounded from below, but never takes

the value −∞.
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Let Iu0,w0 = {f ∈ L1(Z;C(X)) : u0 ≤ f ≤ w0}. The following result states Theorem

3.5 in the more restricted space of functions VIu0,w0
, thus providing a method to get the

contraction property of the Bellman operator in an unbounded from below case where U

never takes the value −∞ on Ω. In the following theorem, we let l̃t = max{|kt|, |lt|} for all

t = 0, 1, . . . and R̃0(K, z) =
∑∞

t=0 pK,z(l̃t) for all K ∈ K and z ∈ Z.

Theorem 3.7. Suppose that (B1)–(B5) and (B6’) hold. Then Theorem 3.5 holds with

VIu0,w0
(0, R̃0), replacing V (0, R̃0).

Proof. By Lemma B.5, T is a self map on Iu0,w0 . Notice that |ψ(x, z)| ≤ l̃0(x, z). Hence,

(B6) holds true for l̃t by definition of l̃t and Theorem 3.5 applies in VIu0,w0
(0, R̃0).

In what follows, to simplify the exposition, we introduce the following notation: for a

function f ∈ Ca(X × Z)

f̂(x, z, z′) = max
y∈Γ(x,z)

f(y, z′). (3.8)

4 Application to endogenous growth

Endogenous growth models have become fundamental to understand economic growth. Sev-

eral contributions consider an unbounded shock space, like Stachurski (2002), Kamihigashi

(2007), Matkowski and Nowak (2011) or Baüerle and Jaśkiewicz (2018). I consider here the

stochastic endogenous growth model studied in Jones et al. (2005), which is described as

follows. The preferences of the agent over random consumption sequences are given by

max E
∞∑
t=0

βt
c1−σ
t υ(`t)

1− σ
, (4.1)

subject to

ct + kt+1 + ht+1 ≤ ztAkαt (ntht)
1−α + (1− δk)kt + (1− δh)ht, (4.2)

`t + nt ≤ 1, (4.3)

ct, kt, ht, `t, nt ≥ 0 (4.4)

for all t = 0, 1, . . ., with k0 and h0 given. Here, {zt} is a Markov stochastic process with

transition probability Qz(·) and Z = (0,∞); ct is consumption; `t is leisure; nt is hours
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spent working; kt and ht are the stock of physical and human capital, respectively; δk

and δh are the depreciation rates on physical and human capital, respectively; and υ is a

continuous function on (0, 1], strictly increasing. The usual non-negativity constraints on

consumption, investment, leisure and hours worked apply. If we let k′ = kt+1, h′ = ht+1

and k = kt, h = ht, c = ct, n = nt and ` = `t, then the feasible correspondence is

Γ(k, h, z) =
{

(k′, h′) : There are c, n, ` such that (4.2)–(4.4) hold
}
,

and the utility function is U(c, `) = c1−συ(`)/(1− σ). Regarding the function υ, we consider

υ(`) = `ψ(1−σ). The endogenous state space is X = [0,∞)×[0,∞) and the family of compact

sets K is formed by compact sets in the product space R+×R+. The Markov chain is given

by the log–log process

ln zt+1 = ρ ln zt + lnwt+1, (4.5)

with ρ ≥ 0 and where the w’s are i.i.d., with support in W ⊆ (0,∞). Let µ be the

distribution measure of the w’s. Note that ρ = 0 corresponds to shocks zt that are i.i.d..

Jones et al. (2005) suppose that zt = exp
(
ζt − (1/2)σ2

ε /(1− ρ2)
)
, where ζt+1 = ρζt + εt+1

and the ε’s are i.i.d., normal with mean 0 and variance σ2
ε . This corresponds to (4.5) with

wt+1 = exp
(
εt+1 − (1/2)σ2

ε /(1 + ρ)
)
. We do not restrict ε to be normally distributed.

To shorten notation, we will use along this subsection the following definitions.

γ = αα(1− α)1−α,

δ = min{δk, δh},

ν = (1− δ)1−σ,

E =
∞∏
s=0

Ewρ
s(1−σ).

Along this section, convergence means convergence with respect to the seminorms pK,z,

K ∈ K, z ∈ Z. We only assume that the expectation Ew is finite.

Proposition 4.1. Consider the endogenous growth model described in (4.1)–(4.5) with

0 ≤ σ < 1 and 0 ≤ ρ < 1. If

β
(
Aγ (Ew)1/(1−ρ)

)1−σ
+ ν < 1, (4.6)
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then the associated Bellman equation admits a unique solution, v∗, in the set V (0, R0)

defined in (2.2) given by

V (0, R0) =
{
f ∈ L1(Z;C(X)) : pK,z(f) ≤ R0(K, z), ∀(K, z) ∈ K × Z

}
,

where, for K ∈ K and z ∈ Z, R0(K, z) = pK,z(
∑∞

t=0 lt) and the family {lt}∞t=0 is given by

(4.7) and (4.9) in the proof below. Moreover, v∗ is the value function v and Tnv0 converges

to v as n → ∞ for all initial guesses v0 ∈ V (0, R0). Finally, the optimal policies are

continuous functions of (k, h).

Proof. We check all the hypotheses of Theorem 3.5. It is clear that (B1)–(B5) are fulfilled.

We focus on (B6) and define g(k, h, z) = Azkαh1−α + (1− δ)(k+ h). Since 0 ≤ σ < 1, both

U and υ are bounded from below by zero, and υ is bounded above by 1. By the definition

of δ, we have zAkα(nh)1−α + (1− δk)k + (1− δh)h ≤ g(h, k, z). Then

ψ(k, h, z) = max
(k′,h′,c,n,`)∈Γ(k,h,z)

u(c, `) ≤ 1

1− σ
g(k, h, z)1−σ ≡ l0(k, h, z). (4.7)

According to (3.8), let

l̂0(k, h, z, z′) = max
(k′,h′,c,n,`)∈Γ(k,h,z)

l0(k′, h′, z′).

Let us determine a bound for l̂0(k′, h′, z, z′). To this end, consider the Lagrange problem

max l0(k′, h′, z′),

s. t.: k′ + h′ ≤ g(k, h, z),

k′, h′ ≥ 0,

(4.8)

and notice that its feasible set is larger than Γ(k, h, z). The constraint is binding at the

optimal solution, which is k′ = αg(k, h, z), h′ = (1− α)g(k, h, z). Substituting this into the

objective function of (4.8), we find its optimal value, which is(
Az′αα(1− α)1−α + (1− δ)

)1−σ
l0(k, h, z) ≤

(
A1−σ(z′)1−σγ1−σ + ν

)
l0(k, h, z),

where the inequality is due to the function c 7→ c1−σ being subaditive, as it is concave and

null at zero. Computing the conditional expectation of the right hand side of the above

inequality, we have∫
Z
l̂0(k′, h′, z, z′)Qz(dz

′) ≤
(
A1−σzρ(1−σ)Ew1−σγ1−σ + ν

)
l0(k, h, z).
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Thus, we define l1(k, h, z) = β
(
A1−σzρ(1−σ)Ew1−σγ1−σ + ν

)
l0(k, h, z).

To calculate l̂1(k′, h′, z, z′), we note that we face the same Lagrange problem (4.8) above,

modulo the “constant” factor β
(
A1−σ(z′)ρ(1−σ)Ew1−σγ1−σ + ν

)
. Thus we will find

l̂1(k′, h′, z, z′) ≤
(
A1−σ(z′)ρ(1−σ)Ew1−σγ1−σ + ν

)
l1(k, h, z)

and then∫
Z
l̂1(k′, h′, z, z′)Qz(dz

′) ≤
(
A1−σzρ

2(1−σ)Ew1−σEwρ(1−σ)γ1−σ + ν
)
l1(k, h, z).

Now define l2(k, h, z) = β
(
A1−σzρ

2(1−σ)Ew1−σEwρ(1−σ)γ1−σ + ν
)
l1(k, h, z). Using induc-

tion, it can be proved exactly the same as for the cases t = 1 and t = 2, that the family of

functions {lt}∞t=0 given by

lt+1(k, h, z) = β
(
A1−σzρ

t+1(1−σ)Ew1−σEwρ(1−σ) · · ·Ewρt(1−σ)γ1−σ + ν
)
lt(k, h, z), (4.9)

for all t = 0, 1, . . ., satisfies the inequalities demanded in (B6). Regarding the series

w0(k, h, z) =
∑∞

t=0 lt(k, h, z), note that the ratio

lt+1(k, h, z)

lt(k, h, z)
= βA1−σzρ

t+1(1−σ)Ew1−σEwρ(1−σ) · · ·Ewρt(1−σ)γ1−σ + ν,

converges to βA1−σEγ1−σ + ν as t → ∞, which is smaller than one by the assumption of

the theorem, since by Jensen’s inequality E ≤ (Ew)(1−σ)/(1−ρ). Thus, by the ratio test, the

series converges pointwise. It is easy to see that inequality (4.6) guarantees unconditional

convergence as well, thus (B6) is fulfilled. To finish the proof, Theorem 3.5 shows that

the optimal policy correspondence is non–empty and upper hemi–continuous. The Convex

Maximum Theorem of Bergé assures that the value function is concave and since the utility

function is strictly concave, the optimal policies are unique, so continuous with respect to

(k, h).

5 Comparison with other approaches

In this section we compare our results with those obtained by other methods: the already

classical weighted norm approach, the one based on countable local contractions and the
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recent Q–transform. In each case, we give a brief description of the method and then, we

work through model examples showing the differences with our method. A word of caution

is needed here. As said in the Introduction, we study dynamic problems where the actions

do not influence the evolution of uncertainty: it is exogenous. The present paper’s aim is

to take advantage of the special structure of the state space of the kind of problems we

analyze, to obtain further insights.

5.1 The weighted norm approach

In the weighted contraction approach—see Boyd (1990), Becker and Boyd (1997) for the

deterministic case and Hernández-Lerma and Lasserre (1999), Jaśkiewicz and Nowak (2011)

and Bäuerle and Rieder (2011) for the stochastic case, it is postulated the existence of a

continuous function ϕ : X × Z :−→ R++, called bounding or weighing function, such that

there exist nonnegative constants M and α such that for all x ∈ X, z ∈ Z, y ∈ Γ(x, z)

(W1) |U(x, y, z)| ≤Mϕ(x, z) and

(W2)
∫
Z ϕ(y, z′)Qz(dz

′) ≤ αϕ(x, z).

Given such a function ϕ, the following Banach space is considered

Cϕ =

{
f : X × Z −→ R continuous : sup

(x,z)∈X×Z

|f(x, z)|
ϕ(x, z)

<∞

}
,

where the norm is defined by ‖f‖ϕ = sup(x,z)∈X×Z (|f(x, z)|/ϕ(x, z)).

Consider the following result, that can be found in (Hernández-Lerma and Lasserre,

1999, Section 8.3), or in (Bäuerle and Rieder, 2011, Theorem WSN, p. 208).

Theorem 5.1. Let ϕ be a continuous function satisfying (W1)-(W2) above, such that

αβ < 1. (5.1)

If

(WC1) Γ is nonempty and continuous and Γ(x, z) is compact valued for all (x, z) ∈

X × Z,

(WC2) U is continuous

(WC3) (x, z) 7−→
∫
Z ϕ(x, z′)Qz(dz

′) is continuous,
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then (a) the value function is the unique continuous solution to the Bellman equation in

Cϕ, (b) value function iteration converges from any initial f ∈ Cϕ, (c) at least one optimal

policy exists and (d) that policy maximizes the right hand side of the Bellman equation.

The conditions of Theorem 5.1 are stricter than those of Theorem 3.5. To see this, we

can take l0 = ϕ in Proposition 3.6 above to construct the family {lt}∞t=0 such that Theorem

3.5 applies. The opposite is not true, that is, Theorem 3.5 is not contained in Theorem

5.1. First, Theorem 3.5 does not impose continuity in both variables (x, z), as required in

(WC3). We show in Appendix C a simple pure currency model where the value function

is discontinuous with respect to the exogenous variable and where no bounding function ϕ

may satisfy (WC3). Second, even if (WC3) is fulfilled, the uniqueness of the solution to the

Bellman equation is given in a larger space, since Ca(X × Z) contains Cϕ(X × Z), for any

bounding function ϕ. Third and last, more importantly beyond the issues of continuity just

discussed, there are bounded from below models for which a bounding function cannot exist

but Theorem 3.5 is applicable. Since that, in principle, there are infinitely many candidates

for bounding functions, to find a model with returns bounded from below, for which there

is no a suitable bounding function is not an easy task. We will use the result below, which

states a necessary condition for the existence of a bounding function ϕ.

For a function f depending on the variables (x, z), remind the notation f̂(x, z, z′) =

maxy∈Γ(x,z)∈X×Z f(y, z′). Also, define
(

0
0

)
= 1.

Proposition 5.2. Let there be a dynamic programming problem (X,Z,Γ, Q, U, β) for which

there is a continuous bounding function ϕ satisfying the conditions of Theorem 5.1. Define

the family of functions {lt}∞t=0, with l0 ∈ Cϕ(X ×Z) and lt+1 = β
∫
Z l̂tQz. Then, there is a

constant M such that
∞∑
t=0

(
t+ r

r

)
lt ≤

M

(1− αβ)r+1
ϕ, for all r = 0, 1, . . .. (5.2)

Proof. We often eliminate the arguments (x, z) in what follows to simplify notation. Note

that l1 = β
∫
Z l̂0Qz ≤ Mβ

∫
Z ϕ̂Qz ≤ M(αβ)ϕ for some constant M and αβ < 1, since

l0 ∈ Cϕ(X ×Z) and ϕ is a suitable bounding function. By induction, lt ≤M(αβ)tϕ, for all

t. Hence, w0 =
∑∞

t=0 lt ≤Mϕ/(1− αβ) is finite and∫
Z
ŵ0Qz ≤

M

(1− αβ)

∫
Z
ϕ̂Qz ≤M

α

(1− αβ)
ϕ.

26



Let w1 =
∑∞

s=1 ls. Then, as in the proof of Theorem 3.5, we have∫
Z
ŵ0Qz =

∫
Z

∞∑
t=0

l̂tQz =

∞∑
t=0

∫
Z
l̂tQz =

1

β

∞∑
t=0

lt+1 =
1

β
w1.

Thus, we have obtained w1(x, z) ≤Mϕ(x, z)αβ/(1− αβ). In general, the following inequal-

ity holds

wt(x, z) ≤M
(αβ)t

1− αβ
ϕ(x, z), for all t = 0, 1, . . ., (5.3)

where wt =
∑∞

s=t ls. To show this, we use the Principle of Induction. The cases t = 0, 1

have just been proved. Suppose that it is true for t. Then∫
Z
ŵtQz ≤M

(αβ)t

1− αβ

∫
Z
ϕ̂Qz ≤M

(αβ)t

1− αβ
αϕ,

and on the other hand, as in the computation above∫
Z
ŵtQz =

∫
Z

∞∑
s=t

l̂sQz =

∞∑
s=t

∫
Z
l̂sQz =

1

β

∞∑
s=t

ls+1 =
1

β
wt+1,

thus we get the inequality sought. Adding (5.3) from t = 0 to t =∞, we obtain12

∞∑
t=0

(t+ 1)`t(x, z) ≤
M

(1− αβ)2
ϕ(x, z) <∞. (5.4)

From (5.4), replacing x by x′ and z by z′ and integrating with respect to Qz in both sides

of the inequality and using the properties of ϕ, we have∫
Z

∞∑
t=0

(t+ 1)l̂tQz =

∞∑
t=0

(t+ 1)

∫
Z
l̂tQz =

1

β

∞∑
t=0

(t+ 1)lt+1 ≤M
α

(1− αβ)2
ϕ.

Thus,
∑∞

t=0(t+1)lt+1 ≤Mϕαβ/(1− αβ)2, which is (5.2) with r = 1. Repeating the scheme

above s steps, we get
∑∞

t=0(t+ 1)lt+s ≤Mϕ(αβ)s/(1− αβ)2. Adding in s again as in (5.4),

we obtain
∞∑
t=0

(
t+ 2

2

)
lt =

∞∑
t=0

(t+ 2)(t+ 1)

2
lt ≤

M

(1− αβ)3
ϕ.

By induction, and using the same arguments as for the cases r = 1 and r = 2, it can be

proved that for any r ≥ 0

∞∑
t=0

(
t+ r

r

)
lt ≤

M

(1− αβ)r+1
ϕ.

12w0 +w1 +w2 + · · · = (l0 + l1 + l2 + · · · ) + (l1 + l2 + · · · ) + (l2 + · · · ) + · · · = l0 + 2l1 + 3l2 + · · · .
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This result will be used to show that the weighted norm approach cannot be applied

to the following simple growth model with a linear technology, multiplicative shocks and

a bounded from below, strictly increasing and strictly concave, felicity function (but our

approach works.)

Example 5.3. Consider an optimal growth model which Bellman equation is

v(k, z) = max
k′∈[0,zk]

(
U(k, k′, z) + β

∫
Z
v(k′, z′)Qz(dz

′)

)
,

where k ∈ [0,∞), Z = {1, g}, with g > 1, Qz := Q is given by Q(g) = p > 0, Q(1) = q > 0,

with p+ q = 1 and the utility function is U(k, k′, z) = u(zk − k′), where

u(c) =
1 + c

3 + ln2 (1 + c)
− 1

3
.

The function u is nonnegative, continuous, unbounded, strictly increasing and strictly con-

cave on [0,∞), with u(0) = 0. 13

The discount factor is taken to be β ≤ 1/(gp + q) < 1. Clearly, any solution of the

Bellman equation has v(0, z) = 0, for all k, z. Let k > 0 and z ∈ {1, g}. With a view to use

the necessary condition in Proposition 5.2, let us take `0(k, z) = maxk′∈[0,zk] U(k, k′, z) =

u(zk). It is clear that l0 ≤ Mϕ for M = 1, since l0 = ψ ≤ ϕ by definition of the bounding

function ϕ. Let

`1(k, z) = β

∫
Z

max
k′∈[0,zk]

`0(k′, z′)Q(dz′) = β(pu(gzk) + qu(zk)),

`2(k, z) = β

∫
Z

max
k′∈[0,zk]

`1(k′, z′)Q(dz′) = β2(p2u(g2zk) + pqu(gzk) + qpu(gzk) + q2u(zk))

...

In general, `t(k, z) = βt
∑t

s=0

(
t
s

)
psqt−su(gszk), for all t, which follows by induction. We

have
∞∑
t=0

lt(k, z) =

∞∑
t=0

t∑
s=0

(
t

s

)
(βp)s(βq)t−su(gszk) =

∞∑
s=0

(βp)su(gszk)

∞∑
t=s

(
t

s

)
(βq)t−s,

13Letting c > 0, denote x = ln (1 + c) > 0. Then u′(c) = (3 + x2 − 2x)/(3 + x2)2 > 0 and

u′′(c) = −2e−x((x − 1)3 + 2)/(3 + x2)3 < 0. Also note that u is unbounded but u′(c) → 0 as

c→∞. For another example where there is no suitable bounding function ϕ whatever the value of

the discount factor β, see Rincón-Zapatero (2022).
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where the change of order summation is admissible since the double series is of positive

terms. Now,
∞∑
t=s

(
t

s

)
(βq)t−s =

1

s!

∞∑
t=s

t(t− 1) · · · (t− s+ 1)(βq)t−s.

The series at the right hand side is the value of the s-th derivative of the power series∑∞
t=0 x

t = 1/(1− x), evaluated at x = βq, hence
∑∞

t=s t(t− 1) · · · (t− s+ 1)(βq)t−s equals

(ds/dxs) (1/(1− x))|x=βq = s!/(1− βq)s+1. Thus

∞∑
t=0

lt(k, z) =
1

(1− βq)

∞∑
s=0

(
βp

1− βq

)s
u(gszk). (5.5)

Let us see that this series converges for all k > 0 and z ∈ Z. Note that

u(gszk) =
1

3 + ln2 (1 + gszk)
+

gszk

3 + ln2 (1 + gszk)
− 1

3

Thus, the series (5.5) decomposes into the sum of three series. The first and the third series

are

1

(1− βq)

∞∑
s=0

(
βp

1− βq

)s 1

3 + ln2 (1 + gszk)
and

−1

3(1− βq)

∞∑
s=0

(
βp

1− βq

)s
,

respectively, which are convergent, since βp < 1− βq (use the ratio test), and the series in

the middle is
1

(1− βq)

∞∑
s=0

(
βpg

1− βq

)s zk

3 + ln2 (1 + gszk)
.

Obviously, this series converges when β < 1/(gp+q). When β = 1/(gp+q), (βpg)/(1−qβ) =

1, and the series reduces to (1−qβ)−1zk
∑∞

s=0 1/(3 + ln2 (1 + gszk)), which is convergent.14

A similar and straightforward argument shows that the series
∑∞

t=0 pK,z(lt) converges for

all compact set K of [0,∞) and z ∈ Z.15 Hence, all conditions of Theorem 3.5 are fulfilled

14Since

lim
s→∞

3 + ln2 (1 + gszk)

3 + ln2 (gszk)
= 1,

by the Limit Comparison Test, the series has the same character than

∞∑
s=0

1

3 + ln2 (gszk)
=

∞∑
s=0

1

3 + (s ln g + ln (zk))2
,

which is convergent for all k > 0 and z ∈ Z.
15Since pK,z(lt) =

∫
Z

maxk∈K lt(k, z
′)Q(dz′) and u is increasing, the problematic part in∑∞

t=0 pK,z(lt), which is (1 − qβ)−1za
∑∞

t=0 1/(3 + ln2 (1 + gtza)), is also convergent, where a =

maxK and K 6= {0} is a compact set of [0,∞). If the compact set is K = {0}, then pK,z(lt) = 0.
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and this growth model admits a solution. Now we argue by contradiction, assuming that a

bounding function ϕ satisfying the assumptions of Theorem 5.1 exists when β = 1/(gp +

q). Then, by Proposition 5.2, there are constants M and α ≥ 0 such that αβ < 1 and∑∞
t=0

(
t+r
r

)
lt(k, z) ≤ αβMϕ(k, z)/(1− αβ)2 <∞, for all k > 0, z ∈ Z, for all r ≥ 0. This is

clearly impossible: for instance, for r = 1, the lefthand series is

∞∑
t=0

(t+ 1)lt(k, z) =
zk

(1− qβ)

∞∑
t=0

t+ 1

3 + ln2 (1 + gtzk)
,

which diverges, attaining a contradiction.16 Thus, a function ϕ satisfying the assumptions

of Theorem 5.1 cannot exist.

This example can be extended to u(c) = (1 + c)/(b+ lna (1 + c))− 1/b, with a > 1 and

b ≥ max(1 + a, (1− a)(1−a)). These inequalities guarantee that u is strictly increasing and

strictly concave. The series (5.5) converges since a > 1 with the same condition for β,

β ≤ 1/(gp+ q), but the series

∞∑
t=0

(
t+ r

r

)
lt+1(k, z) =

zk

r!(1− qβ)

∞∑
t=0

(t+ r)(t+ r − 1) · · · (t+ 1)

b+ lna (1 + gtzk)

diverges for all positive integer r ≥ a − 1, since the numerator is a polynomial of degree r

and the series then has the same character than
∑∞

t=1 1/ta−r, which is convergent if and

only if a− r > 1.

5.2 Countable local contractions

Matkowski and Nowak (2011) and Jaśkiewicz and Nowak (2011) extend the (countable)

local contraction approach developed in Rincón-Zapatero and Rodŕıguez-Palmero (2003)

from the deterministic case to the stochastic case.17 In this section we describe the method

16Note that

t+1
3+ln2 (1+gtzk)

1
t+1

=
(t+ 1)2

3 + (t ln g + ln (zk))2
3 + (t ln g + ln (zk))2

3 + ln2 (1 + gtzk)
→ 1

ln2 g
· 1,

as t→∞, thus by the Limit Comparison Test, the series has the same character than the harmonic

series
∑∞

t=0 1/(t+ 1).
17Our approach can be considered a way to extend the (uncountable) local contraction method

in Martins da Rocha and Vailakis (2010) from the deterministic to a stochastic setting. The words
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and point out some of the features that may restrict its applicability to stochastic dynamic

programs where the Markov chain is exogenous.

The following are the assumptions in (Jaśkiewicz and Nowak, 2011, Section 3), adapted

to our setting:

(W) The technological correspondence Γ is upper semicontinuous, Γ(x, z) is compact for

each (x, z) ∈ X × Z, U : Ω −→ R ∪ {−∞} is upper semicontinuous and for any continuous

function f : X × Z −→ R

(x, z) 7→
∫
Z
f(x, z′)Qz(dz

′) (5.6)

is continuous.

(C1) There exists a sequence {Xj}∞j=0 of non-empty Borel subsets of X × Z such that

Xj ⊆ Xj+1 for all j ≥ 0 and X × Z =
⋃∞
j=0 IntXj .

(C2) Letting mj = sup(x,z)∈Xj supy∈Γ(x,z) max(U(x, y, z), 0), for all j ≥ 0, assume that

m0 > 0, mj < 0 for every j ≥ 0 and β limj→∞mj+1/mj < 1.

(C3) For each j ≥ 0 and (x, z) ∈ Xj , y ∈ Γ(x, z), we have Qz(Zj+1) = 1, where

Zj+1 = {z′ ∈ Z : (y, z) ∈ Xj+1}.

Then, (Jaśkiewicz and Nowak, 2011, Theorem 1) establishes the existence of a solution

to the Bellman equation in a suitable class of upper semicontinuous functions, which is the

value function, and the existence of optimal policies. We remit the reader to the paper to

take care of the details. Here we want only to make a comparison with our approach.

Assumption (W) is more general than ours, since it does not require continuity, except

(5.6), which is stronger (we only require continuity with respect to x, not with respect

to the exogenous state variable z). (C3) basically implies that Z is bounded or that the

probability measures Qz have bounded support. To see this in an example, consider the

classical growth model with X = [0,∞), Z = (0,∞), Γ(x, z) = [0, zf(k)], with f a typical

production function, continuous, strictly increasing and unbounded. Let u be a continuous

utility function on consumption which is nonnegative and unbounded, and let U(k, k′, z) =

u(zf(k)− k′), with k′ ∈ Γ(x, z).

Suppose, as we did in the Endogenous Growth Model of Section 4, that the shocks evolve

“countable” and “uncountable” refer to the cardinality of the family of seminorms used to describe

the topology of the function space where a given operator is defined.
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as in (4.5), ln zt+1 = ρ ln zt + lnwt+1, where the domain of the iid shocks wt is W ⊆ (0,∞).

Let us see that trying to construct a suitable increasing family of compact sets covering

the state space such that (C1)–(C3) holds leads to a contradiction. Let Xj = Kj × Zj ,

where Kj ⊆ X and Zj ⊆ Z (neither Kj nor Zj have to be compact sets). Then, by (C2),

mj = sup(k,z)∈Kj×Zj u(zf(k)), and for this number to be finite, both Kj and Zj have to be

bounded. Then, consider (C3):

1 = Qz(Zj+1) =

∫
W
IZj+1(zρw)µ(dw),

for all z ∈ Zj , where IB denotes the indicator function of the Borel set B. But this is clearly

impossible if w has not bounded support, since for any z > 0, the range of zρw is (0,∞).

For instance, if w has density e−w in W = (0,∞) and we suppose that Zj = (0, zj ], with

zj > 0, then

Qzj (Zj+1) =

∫
(0,∞)

IZj+1(zρjw)e−wdw =

∫
(0,zj+1/z

ρ
j ]
e−wdw = 1− e−zj+1/z

ρ
j < 1.

Thus, (C3) does not hold.

Beyond the constraint (C3), conditions (C1) and (C2) may also be limiting. To illustrate

this, consider again the growth model studied in Example 5.3. Note that Assumption (C1)

to (C3) become:

(C1) [0,∞) × {1, g} =
⋃∞
j=0 IntXj , where Xj = [0, gj ] × {1, g} is a suitable selection

now.

(C2) If mj = sup(k,z)∈Xj supk′∈[0,zk] U(k, k′, z) = u(gj+1), for j = 1, 2, . . ., then it must

be

β lim
j→∞

mj+1

mj
< 1.

(C3) It is fulfilled trivially with the selection of the family {Xj} made in C1 (this is

possible since Z is bounded).

Note that β limj→∞mj+1/mj = βg < 1, which implies β < 1/g. Our method works for

β ≤ 1/(gp+ q) as shown above (and the weighted contraction for β < 1/(pg + q), but not

for β = 1/(gp+ q).) Since pg + q ≤ g, because g > 1 and pg + q is a convex combination

of g and 1, we have 1
g <

1
gp+q , as soon as 0 < p < 1, thus β < 1/g is more restrictive for β

than β ≤ 1/(gp+ q).
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5.3 Q–transform

The Q–transform is a novel method due to Ma et al. (2022), and constitutes an improvement

of the weighted norm approach in certain cases. The Q–transform applies to rather general

dynamic problems. Roughly speaking, it consists in taking conditional expectations at

both sides of the Bellman equation that, in some models, converts an unbounded dynamic

program into a bounded one. In our context, the transformed Bellman equation would be

(Ez({•}) =
∫
Z •Qz(dz

′))

g(x, y, z) = βEz sup
y′∈Γ(y,z′)

{
U(y, y′, z′) + g(y, y′, z′)

}
.

There are the connections: x ∈ X, z, z′ ∈ Z, y ∈ Γ(x, z), y′ ∈ Γ(y, z′). Also, since that v

satisfies the Bellman equation

g(x, y, z) = βEzv(y, z′), y ∈ Γ(x, z).

Defining as usual ψ(x, z) = supy∈Γ(x,z) U(x, y, z) and χ(y, z) = Ezψ(y, z′), the assumptions

about these functions are (see (Ma et al., 2022, Assumption 5.1)): (1) there is a weighing

function ϕ and there exist constants M ≥ 0, α ≥ 0, αβ < 1 such that ψ(x, z) ≤ Mϕ(x, z)

and Ezϕ(y, z′) ≤ αϕ(x, z), for all x ∈ X, z ∈ Z and y ∈ Γ(x, z), and (2) χ(y, z) is bounded

below for y ∈ Γ(x, z), for all x ∈ X, z ∈ Z.

Condition (1) cares for unbounded from above growth, and it is the same that the

weighted norm approach. Thus, the Q–transform cannot be applied to Example 5.3 above

for a discount factor β = 1/(pg + q). To show that there are models for which condition

(2) fails, but that can be worked with Theorem 3.7, consider a modification of the linear

quadratic example in (Stokey et al., 1989, p. 277) with X = R, Z = [0,∞), U(x, y, z) =

zx − bx2 − c(y − x)2, with b, c > 0. Here, zx − bx2 is a firm’s net revenue when its

capital stock is x, and c(y − x)2 is the cost of changing the capital stock from x to y.

Suppose that zt+1 = ρzt + wt, where ρ > 0 and {wt} is a sequence of independent and

identically distributed random variables with wt ≥ 0, with finite mean, Ew, second order

moment, Ew2, and domain W ⊆ R+. Also, given x, the next capital stock may vary in

[−(1 + r)|x|, (1 + r)|x|], with r > 0.

Given (x, z) ∈ X × Z, we have ψ(x, z) = zx − bx2 and Ezψ(y, z′) = (ρz + Ew)y − by2,

for y ∈ [−(1 + r)|x|, (1 + r)|x|]. Clearly, χ(y, z) = Ezψ(y, z′) is unbounded from below, that
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is

inf
(x,z)∈X×Z

inf
y∈[−(1+r)|x|,(1+r)|x|]

χ(y, z) = −∞,

thus the Q–transform cannot be applied.

Let us check that (B6)’ is fulfilled for suitable values of the discount factor β. This

example will help us to show the flexibility of the method of averaging with respect to the

exogenous variable. Again, this is possible due to the special structure of the problems we

analyze, where actions do not “choose” probability measures.

To find a suitable family {kt}, choose y(x, z) = x, which is an admissible policy, and let

k0(x, z) = U(x, y(x, z), z) = zx − bx2, k1(x, z) = βEzk0(y(x, z), z′) = β((ρz + Ew)x − bx2)

and, in general, kt = βt((ρtz+(1+ρ+ · · ·+ρt−1Ew)x−bx2). Clearly, Σ∞t=0kt(x, z) converges

unconditionally if βρ < 1.

Regarding the family {lt}, we between discriminate two cases.

(a) Suppose that ρ < 1 + r, that is, the trend growth of the shock is smaller than the

endogenous variable growth.

Note that zx− bx2 ≤ z2/4b, thus ψ(x, z) ≤ z2/4b, for all x, z ≥ 0. Take l0(z) = z2/4b,

which is independent of x, hence

Ez(l0(z′)) =
1

4b

∫
W

(ρz + w)2dw ≡ 1

4b
χ(z).

Let l1(z) = βχ(z)/4b. Now,
∫
W (ρz + w)2dw = ρ2z2 + 2zEw + Ew2, thus

Ez(l1(z′)) = β
1

4b

(
ρ2

∫
W

(ρz + w)2dw + 2(ρz + Ew)Ew + Ew2

)
,

thus take l2(z) = β2
(
ρ2χ(z) + 2(ρz + Ew)Ew + Ew2

)
/4b. By an inductive argument,

it is possible to prove that

lt+1(z) =
1

4b
βt

(
(ρ2)tχ(z) + 2zEw

2t∑
s=t+1

ρs + 2(Ew)2
2t−1∑
s=1

ρs + Ew2
t∑

s=0

(ρ2)s

)
,

satisfies lt+1 = βEzlt. Taking β such that βρ2 < 1, the series
∑∞

t=0 lt(z) converges for

all z, and clearly,
∑∞

t=0 pz(lt) converges as well.

(b) Suppose that ρ ≥ 1 + r.
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Choose now l0(x, z) = zx ≥ ψ(x, z). Let

l1(x, z) = βEz( max
y∈Γ(x,z)

l0(y, z′)) = β(ρz + Ew)|x|

and, in general

lt(x, z) = βt(ρtz + (1 + ρ+ · · ·+ ρt−1)Ew)(1 + r)t|x|.

The condition βρ(1 + r) < 1 implies that the sum
∑∞

t=0 lt(x, z) converges uncondition-

ally, since pK,z(lt) = βt(ρt(ρz+Ew)+(1+ρ+ · · ·+ρt−1)Ew)(1+r)t(maxx∈K |x|), where

K is any compact subset of R, and then
∑∞

t=0 pK,z(lt) is clearly convergent.

Thus, collecting all the constraints above for β, we have proved that Theorem 3.7 applies

if β(1 + r) min(ρ, 1 + r) < 1.

Let us try the weighted norm approach. Since costs are quadratic, we may consider

ϕ(x, z) = (z + m)|x| + |x|2, with m ≥ 0 being a suitable constant. Then |U(x, y, z)| ≤

(1 + b)ϕ(x, z), for all x ∈ X and all z ∈ Z. Since Ezϕ(y, z′) = (ρz + Ew +m)|y|+ |y|2, for

y ∈ [−(1 + r)|x|, (1 + r)|x|], condition (5.1) becomes to

β(1 + r) sup
(x,z)∈X×Z

(ρz + Ew +m) + (1 + r)|x|
z +m+ |x|

< 1.

Independently of the value of m, if ρ > 1 + r, then the expression above is decreasing in

|x|, for all z > (rm− Ew)/(ρ− 1− r), thus for z in this region, the supremum is attained

at x = 0, and its value is ρ. On the other hand, if ρ < 1 + r, then the expression is

increasing in |x|, for all z > (Ew− rm)/(r+ 1− ρ), thus for z in this region the supremum

is attained at ∞, and its value is 1 + r. For ρ = 1 + r the supremum is ρ = 1 + r. Thus,

the inequality (5.1) is β(1 + r) max(ρ, 1 + r) < 1, which is obviously stronger for β than

β(1 + r) min(ρ, 1 + r) < 1.

To close this example, note that (Jaśkiewicz and Nowak, 2011, Theorem 1) cannot be

applied if the shocks wt do not have compact support, by the same reasons adduced in

Section 5.2.
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6 Conclusions

We have developed a framework to analyze stochastic dynamic problems with unbounded

rewards and shocks, where the reward function does not take −∞ as a value and the

shocks are exogenous. We obtain new existence and uniqueness results of solutions to the

Bellman equation through the use of a notion of Banach contraction which generalizes

Banach and local contractions. We introduce seminorms that give a different treatment to

the endogenous state variable and the exogenous one. While a supremum norm on arbitrary

compact sets is considered in the former variable, an L1 type norm is considered in the

latter variable. Putting together this definition with the aforementioned generalization of

the local contraction concept, we are able to maintain the monotonicity (in a mild sense)

of the Bellman operator, thus proving that it is essentially a contractive operator.

We provide a method to check the hypotheses needed to apply the approach, based

on assumptions (B6) or (B6)’, that can be used straightforwardly to analyze a variety of

models. We apply these results to an Endogenous Growth model with bounded from below

rewards. We compare our method with the weighted contraction approach, the countable

local contraction approach of Jaśkiewicz and Nowak (2011) and the Q–transform method of

Ma et al. (2022), showing instances where the method developed in this paper works, but

the aforementioned methods fail. In particular, we show a neoclassical stochastic growth

model with bounded from below rewards and a discount factor for which a weighing function

cannot exist, but our approach can be used.

The paper could be extended in several ways: (1) to deal with problems where the

reward function does take −∞ as a value; a possible direction would be to substitute the

seminorms by pseudometrics that mix conditional expectation with distances á la Thomp-

son metric, as in Rincón-Zapatero and Rodŕıguez-Palmero (2003) and Martins da Rocha

and Vailakis (2010) for deterministic problems; (2) to analyze problems where uncertainty

is not exogenous; this way has been initiated in Rincón-Zapatero (2022); and (3), to work

with non additive preferences; possibly the method could be extended to the case of Black-

well aggregators, which satisfy a global Lipschitz condition with respect to future expected

utility, of Lipschitz constant smaller than one, but it would be harder to consider Thompson
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aggregators as those introduced in Marinacci and Montrucchio (2010). However, Bloise and

Vailakis (2018) and Bloise, et al. (2021) have already found a fruitful path to study stochas-

tic dynamic programs with recursive utility given by Thompson aggregators by means of

Tarski’s Fixed Point Theorem.

A Proofs of Section 2

Lemma A.1. Let T : F −→ F be an L-local contraction on F ⊆ E and let x0 ∈ F be such

that (I)–(VI) hold true for a suitable r0 ∈ C. Let R0 be defined as in (VI). Then

(a) T : VF (x0, R0) −→ VF (x0, R0).

(b) For any a ∈ A, limt→∞(LtR0)(a) = 0.

Proof. Due to the subhomogeneity of L for finite sums, L(r0 + Lr0 + · · ·+ LT r0) ≤ Lr0 +

· · · + LT+1r0 ≤ R0, for all finite T . Letting T → ∞, we obtain r0 + LR0 ≤ R0. Let

x ∈ VF (x0, R0), so da(x0, x) ≤ R0(a) for all a ∈ A. By the triangle inequality and since T

is an L–local contraction

da(x0, Tx) ≤ da(x0, Tx0) + da(Tx0, Tx)

≤ d0(a) + (Lda)(x0, x)

≤ d0(a) + (LR0)(a)

≤ R0(a).

This proves (a). To show (b), note that, by the same arguments used to prove (a), for

LtR0 ≤ Ltr0 +Lt+1r0 + · · · , for all t = 0, 1, . . .. Then LtR0(a) is bounded by the remainder

of the convergent series R0(a), thus it converges to 0 as t→∞, for all a ∈ A.

Proof of Corollary 2.5. By Theorem 2.4, T admits a unique fixed point x∗ in

VF (x0, R0), where R∗0 =
∑∞

t=0 L
tr∗0, for any r∗0 ∈ C for which R∗0 is a convergent series.

Suppose, by contradiction, that T admits another fixed point x∗∗ 6= x∗ in F . By assump-

tion, there is r∗∗0 ∈ C such that x∗∗ ∈ VF (x0, R
∗∗
0 ), where R∗∗0 =

∑∞
t=0 L

tr∗∗0 is finite. Let

r0 = max{r∗0, r∗∗0 } and R0 =
∑∞

t=0 L
tr0. Then R0 is finite and R∗0, r

∗∗
0 ≤ R0. Moreover,
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both x∗, x∗∗ ∈ VF (x0, R0), thus by Theorem 2.4, x∗ = x∗∗. The convergence of iterating

sequences is also an immediate consequence of Theorem 2.4. �

Proof of Proposition 2.6. Note that
∑∞

t=t0
Ltd0 ≤ s+ Ls+ L2s+ · · · ≤ (1 + θ + θ2 +

· · · )s = 1
1−θs. Hence,

∑∞
t=0 L

td0 =
∑t0−1

t=0 Ltd0 +
∑∞

t=t0
Ltd0 ≤

∑t0−1
t=0 Ltd0 + 1

1−θs is finite

for all a ∈ A.

B Proofs of Section 3

A function f : X × Z −→ R is a Carathéodory function on X × Z if it satisfies

1. for each x ∈ X, the function fx := f(x, ·) : Z −→ R is Borel measurable;

2. for each z ∈ Z, the function fz := f(·, z) : X −→ R is continuous.

Under our assumptions, a Carathéodory function is jointly measurable in X×Z, see Alipran-

tis and Border (1999), Lemma 4.50. Also, a function that is Carathéodory on X × Z is

obviously Carathéodory on A×Z for all A ⊆ X. Let us denote by Ca(A× Z) the set of all

Carathéodory functions on A× Z.

Given f ∈ Ca(X × Z), we denote

f̂(x, z) := max
y∈Γ(x,z)

f(y, z), |̂f |(x, z) := max
y∈Γ(x,z)

|f(y, z)|.

We will make use of the following lemma in the main text and along this appendix.

Lemma B.1. (1) For all f ∈ Ca(X × Z), both f̂ , |̂f | ∈ Ca(X × Z).

(2) For all f ∈ L1(Z;C(X)), both f̂ , |̂f | ∈ L1(Z,Z, Qz), for all z ∈ Z.

Proof. (1) Given the assumption made about the continuity of Γ, by the Bergé Theorem of

the Maximum, the map x 7→ f̂(x, z) is continuous, for any z ∈ Z fixed, and by the Measur-

able Theorem of the Maximum, z 7→ f̂(x, z) is Borel measurable; thus, f̂ is a Carathéodory

function on X × Z. Obviously, the same is true for |̂f |.

(2) Since pK,z(f) <∞ for all K ∈ K and all z ∈ Z, and Γ(x, z) is a compact set for any

x ∈ X, z ∈ Z, then
∫
Z |̂f |(y, z

′)Qz(dz
′) = pΓ(x,z),z(f) <∞. Obviously, the same is true for

f̂ .
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Proof of Lemma 3.4. We organize the proof in several previous lemmas.

Lemma B.2. Let assumptions (B1) to (B6) to hold. Then

1.
∑∞

t=0 L
tpl0 <∞;

2. R0[Γ] ∈ L1(Z;C(X)) and pl0 + LR0 ≤ R0.

Proof. Given x ∈ X and z ∈ Z, βplt [Γ](x, z) = β
∫
Z maxy∈Γ(x,z) lt(y, z

′)Qz(dz
′) ≤ lt+1(x, z),

hence plt [Γ] ∈ L1(Z,C(X)) and then Lplt(K, z) = βpK,z(p
lt [Γ]) ≤ pK,z(lt+1), for all t =

0, 1, . . .. Thus, Ltpl0 ≤ Lt−1pl1 ≤ · · · ≤ plt . By (B6), the series
∑∞

t=0 p
lt(K, z) converges for

all K ∈ K and z ∈ Z, thus
∑∞

t=0 L
tpl0 converges. To conclude the proof, by the triangle

inequality

pK,z(p
l0 [Γ] + · · ·+ plt [Γ]) ≤ pK,z(pl0 [Γ]) + · · ·+ pK,z(p

l0 [Γ])

≤ (pK,z(l1) + · · ·+ pK,z(lt+1).

Letting t→∞ and adding pK,z(ψ) to both sides of the above inequality, we have pK,z(ψ) +

pK,z(R0[Γ]) ≤ R0(K, z), showing at the same time that R0[Γ] ∈ L1(Z;C(X)).

Lemma B.3. Let assumptions (B1) to (B6) hold. Then f ∈ V (0, R0) implies Tf ∈

L1(Z;C(X)).

Proof. Let f ∈ L1(Z;C(X)). We use the notation fx and fz introduced above at the

beginning of this section. The function fx is Borel measurable for all x ∈ X and Qz–

integrable for any z ∈ Z. Thus, fx can be written as the difference of two positive,

Qz–integrable functions, fx = f+
x − f−x , where f+

x = max(fx, 0) and f−x = max(−fx, 0).

Applying Theorem 8.1 in Stokey et al. (1989), both Mf+
x and Mf−x are Borel measurable.

Since (Mf)x = M(fx) = M(f+
x ) −M(f−x ), (Mf)x is measurable for any x ∈ X. To see

that (Mf)z is continuous, consider a sequence {xn} in X that converges to x ∈ X. Then

the sequence and its limit form the compact set K = {xn} ∪ {x}. Let fn := fxn , for

n ≥ 1. For all z′ ∈ Z, fn(z′) → fx(z′) as n → ∞, since f is continuous in x. More-

over, |fz′ | ≤ supx∈K |fz
′
(x)|, and z′ 7→ supx∈K |fz

′
(x)| is Qz–integrable by definition of

L1(Z;C(X)), thus by the Lebesgue dominated convergence theorem

(Mf)(xn, z) =

∫
Z
fn(z′)Qz(dz

′)→
∫
Z
fx(z′)Qz(dz

′) = (Mf)(x, z),
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thus (Mf)z is continuous. Hence, Mf is a Carathéodory function and thus U(x, y, z) +

βMf(y, z) is continuous in (x, y) for all z, and it is Borel measurable in z for all (x, y). By

the Bergé Maximum Theorem, the function Tf is thus continuous in x for all z, and by the

Measurable Maximum Theorem, it is Borel measurable for any x. In short, the function

(x, z) 7→ Tf(x, z) = max
y∈Γ(x,z)

(U(x, y, z) + βMf(y, z)),

is a Carathéodory function. Moreover, if f ∈ F and x ∈ X, z ∈ Z

|Tf(x, z)| ≤ | max
y∈Γ(x,z)

U(x, y, z)|+ β max
y∈Γ(x,z)

∫
Z

max
y∈Γ(x,z)

|f(y, z′)|Qz(dz′)

≤ l0(x, z) + β

∫
Z

max
y∈Γ(x,z)

w(y, z′)Qz(dz
′)

≤ l0(x, z) + βpΓ(x,z),z(f).

Since Γ(x, z) ∈ K, for f ∈ V (0, R0), we have pΓ(x,z),z(f) ≤ R0[Γ](x, z). By Lemma B.2,

pK,z(l0) + βpK,z(R0[Γ]) ≤ R0(K, z). Hence pK,z(Tf) ≤ R0(K, z). This proves that Tf ∈

V (0, R0), and hence that Tf ∈ L1(Z,C(X)).

Lemma B.4. Let assumptions (B1) to (B6) hold. Then D(V (0, R0)) ⊆ C.

Proof. Since f ∈ V (0, R0), pf ≤ R0, hence we can take c = 1. Also, pf ∈ Ca(X × Z), since

pf [Γ](x, z) =
∫
Z maxy∈Γ(x,z) |f(y, z′)|Qz(dz′) is continuous in x and Borel measurable in z,

by Lemma B.1. Moreover, pf [Γ] ≤ R0[Γ] implies pK,z(p
f [Γ]) ≤ pK,z(R0[Γ]) ≤ 1

βR0(K, z),

by Lemma B.2. Hence, pf [Γ] ∈ L1(Z,C(X)).

Now, we are in position to prove Lemma 3.4. First, let us see that L : C −→ C. Let

p ∈ C; by the definition of the operator L and Lemma B.2

Lp(K, z) = βpK,z(p[Γ]) ≤ βpK,z(cR0[Γ]) ≤ cR1(K, z) ≤ cR0(K, z),

and so, Lp[Γ] ≤ cR0[Γ] and Lp[Γ] ∈ L1(Z,C(X)). Second, we prove that the assumptions

(I) to (VI) are fulfilled. Regarding (I), note that p + q ∈ C if p, q ∈ C, trivially, as well it

is also immediate that if p′ ∈ C and p ≤ p′, then p ∈ C. On the other hand, if a countable

chain of partial sums p0, p0 +p1, p0 +p1 +p2, . . . , is bounded by an element P in C, then the

infinite sum, p :=
∑∞

n=0 pn, is well defined and p ≤ P ≤ cR0 for some constant c. Moreover,
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since p[Γ] ≤ cR0[Γ] and R0[Γ] ∈ L1(Z;C(X)) by Lemma B.2, the Monotone Convergence

Theorem implies that p[Γ](x, ·) is Qz–integrable for all z ∈ Z and all x ∈ X. On the other

hand, each function pi[Γ](·, z) is continuous in x, for all i = 1, 2, . . .. By the Weierstrass M

test, the function p[Γ](·, z) is also continuous in x for all z ∈ Z. These two observations

imply that p[Γ] ∈ L1(Z;C(X)). (II) is trivial; (III) holds, since the integral is monotone, and

regarding (IV), it holds true, since for all p, q ∈ C, pK,z(p[Γ]+q[Γ]) ≤ pK,z(p[Γ])+pK,z(q[Γ])

by definition of the seminorms pK,z, hence

L(p+ q)(K, z) = pK,z(p[Γ] + q[Γ])

≤ pK,z(p[Γ]) + pK,z(q[Γ])

= Lp(K, z) + Lq(K, z).

L is clearly sup-preserving in C by the Monotone Convergence Theorem, hence (V) also

holds. Finally, (VI) is implied by Lemma B.2 and Lemma B.3. �

Let the two families of functions {ut}∞t=0 and {lt}∞t=0 defined in (B6)’. Let Iu0,w0 = {f ∈

L1(Z;C(X)) : u0 ≤ f ≤ w0}.

Lemma B.5. T : Iu0,w0 −→ Iu0,w0.

Proof. We prove that for all x ∈ X, z ∈ Z and t = 0, 1, . . .

β

∫
Z
ut(y(x, z), z′)Qz(dz

′) ≥ ut+1(x, z)

and

β

∫
Z

max
y∈Γ(x,z)

wt(y, z
′)Qz(dz

′) ≤ wt+1(x, z).

In fact

β

∫
Z
ut(y(x, z), z′)Qz(dz

′) =

∫
Z

∑
s≥t

ks(y(x, z), z′)Qz(dz
′)

= β
∑
s≥t

∫
Z
ks(y(x, z), z′)Qz(dz

′)

= β
∑
s≥t

ks+1(x, z)

= ut+1(x, z),
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where the exchange of integral and summatory is due to the Monotone Convergence Theo-

rem. In the same way

β

∫
Z

max
y∈Γ(x,z)

wt(y, z
′)Qz(dz

′) ≤ β
∫
Z

max
y∈Γ(x,z)

∑
s≥t

ls(y, z
′)Qz(dz

′)

≤
∑
s≥t

β

∫
Z

max
y∈Γ(x,z)

ls(y, z
′)Qz(dz

′)

≤
∑
s≥t

ls+1(x, z)

=
∑
s≥t+1

ls(x, z)

= wt+1(x, z).

Let f ∈ Iu0,w0 . That Tf is in L1(Z,C(X)) is proved as in Lemma B.3 above. Let us

show first that Tf ≥ u0. For x ∈ X, and z ∈ Z, to simplify notation, let y = y(x, z). Then

Tf(x, z) ≥ U(x, y0, z)|+ β

∫
Z
|f(y, z′)|Qz(dz′)

≥ k0(x, z) + β

∫
Z
u0(y, z′)|Qz(dz′)

≥ k0(x, z) + βu1(x, z)

= u0(x, z).

Also

Tf(x, z) ≤ max
y∈Γ(x,z)

U(x, y, z) + β max
y∈Γ(x,z)

∫
Z

max
y∈Γ(x,z)

f(y, z′)Qz(dz
′)

≤ l0(x, z) + β

∫
Z

max
y∈Γ(x,z)

f(y, z′)Qz(dz
′)

≤ l0(x, z) + β

∫
Z

max
y∈Γ(x,z)

w0(y, z′)Qz(dz
′)

≤ l0(x, z) + w1(x, z)

= w0(x, z).
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C Continuity of the Markov operator

The issue of continuity of the value function in the unbounded case (and unbounded space

of shocks) is not an easy one. The translation of Lemma 12.14 in Stokey et al. (1989) to

this case is not straightforward, even if the Markov chain is strong Feller continuous. Recall

that Q has the weak (strong) Feller property if M maps bounded continuous functions

(resp. bounded measurable functions) on Z into bounded continuous functions. To see

the kind of problems that may emerge for unbounded functions, consider the following

example, adapted from Stoyanov (2013). Let Z = [0,∞) and let the transition function

Q : Z ×Z −→ R be defined as follows:

Q(z,B) =

 δ0(B), if z = 0;∫
B dFz(z

′), if z > 0,
(C.1)

where δ0 is the Dirac measure at the point 0, that is, δ0(B) = 1 if 0 ∈ B and δ0(B) = 0

otherwise, and for 0 < z ≤ 1

Fz(z
′) =


0, if z′ = 0;

z′z2 + 1− z, if 0 < z′ ≤ 1
z ;

1, if z′ > 1
z .

,

Finally, for z ≥ 1, Q(z,B) = λ(B ∩ [0, 1]), where λ denotes the Lebesgue measure of R.

Note that, for 0 < z < 1, Fz is a distribution function: it is nondecreasing, continuous

except at 0, where the right sided limit exists, 0 ≤ Fz ≤ 1, and∫
dF (z′) = (z′z2 + 1− z − 0)|z′=0 +

∫ 1
z

0
z2dz′ = 1− z + z = 1.

Moreover, it is clear that Q(·, B) is Borel measurable. Thus, Q is a transition function. Let

f(y, z) = f(z) be independent of y and continuous in z. Then Mf is well defined in this

particular example and depends only on z, with (Mf)(0) =
∫
f(z′)Q(0, dz′) = f(0). For

0 < z < 1 we have

(Mf)(z) =

∫
f(z′)Q(z, dz′) =

∫
f(z′)dFz(z

′)

= f(0)(z′z2 + 1− z − 0)|z′=0 +

∫ 1
z

0
f(z′)z2dz′ = f(0)(1− z) + z2

∫ 1
z

0
f(z′)dz′.
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Since f is continuous, Mf is continuous for 0 < z < 1. For z ≥ 1, Mf is constant and

given by

(Mf)(z) =

∫
f(z′)Q(z, dz′) =

∫
[0,1]

f(z′)dz′.

Now, if f is bounded, there is k > 0 such that−k ≤ f ≤ k, hence−kz ≤ z2
∫ 1
z

0 f(z′)dz′ ≤ kz,

thus z2
∫ 1
z

0 f(z′)dz′ tends to 0 as z → 0+, hence Mf(z) → f(0) = Mf(0), when z → 0+,

thus Mf is continuous at 0. On the other hand, f(0)(1 − z) + z2
∫ 1
z

0 f(z′)dz′ tends to∫ 1
0 f(z′)dz′ = Mf(1) as z → 1−, thus Mf is continuous at 1. Thus Mf is continuous and

hence Q is strong Feller continuous. However, considering the unbounded function g(z) = z,

we have Mg(0) = g(0) = 0 and Mg(z) = 1/2 for z > 0, thus Mg is discontinuous at 0.

Consider now the following simple pure currency model with linear utility, where agents’

preferences are subject to random shocks. See Stokey et al. (1989) for further details about

this model. Let the utility the utility u(c, z) = (1 +z)c depend on consumption c and shock

z and let Γ(m) = [0,m + y], where m ≥ 0, y > 0 is a constant, X = R+, Z = [0,∞], and

let a discount factor β such that β < 2/3. The dynamic programming equation is

v(m, z) = max
m′∈[0,m+y]

{
(1 + z)(m+ y −m′) + β

∫
[0,∞)

v(m′, z′)Qz(dz
′)
}
.

The random shocks are assumed to be governed by the Markov chain Q described in (C.1).

We are simply interested in showing that the value function is not jointly continuous in

(m, z). It is easily checked that

v(m, z) =

 m+ y + y β
1−β , if z = 0;

(1 + z)(m+ y) + 3
2y

β
1−β , if z > 0,

is a solution in the class Ca(R+ × R+), which coincides with the value function, and it is

not continuous in z.

To prove that (B6) is fulfilled, take l0(m, z) = ψ(m, z) = (1 + z)(m+ y). Now, noticing

that
∫
Z z
′Qz(dz

′) = 1/2 and recalling that Q0 is the Dirac measure at 0, it is easy to

compute, where m′ = m+ y

∫
Z
`0(m′, z′)Qz(dz

′) = β

 m+ 2y, if z = 0;

(3/2) (m+ 2y), if z > 0.
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Thus, l1(m, z) = β(m + 2y), iz z = 0, and l1(m, z) = β (3/2) (m + 2y), for z > 0. In

general, lt(m, z) = βt(3/2)(m + (t + 1)y), for all t ≥ 1. Clearly,
∑∞

t=0 lt is unconditionally

convergent for all β < 1, thus assumption (B6) holds. Given β, ϕ(m, z) = (1 + az)(m+ y),

with a ≥ 1 is a bound of U(m,m′, z). However,
∫
Z ϕ(m′, z′)Q0(dz′) = ϕ(m′, 0) = m+y and∫

Z ϕ(m′, z′)Qz(dz
′) = (1 + (a/2))(m′ + by), if z > 0. Thus (m, z) 7→

∫
Z ϕ(m′, z′)Qz(dz

′) is

discontinuous at z = 0 and then (WC3) in Theorem 5.1 is not fulfilled. Any other majorant

function of the selected ϕ will suffer the same problem.
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