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Abstract
We reconsider the theory of Thompson aggregators proposed by Mari-

nacci and Montrucchio [31]. We prove the existence of a Least Fixed
Point (LFP) solution to the Koopmans equation. It is a recursive utility
function. Our proof turns on demonstrating the Koopmans operator is a
Scott continuous function when its domain is an order bounded subset of
a space of bounded functions defined on the commodity space. Kleene’s
Fixed Point Theorem yields the construction of the LFP by an iterative
procedure. We argue the LFP solution is the Koopmans equation’s prin-
cipal solution. It is constructed by an iterative procedure requiring less
information (according to an information ordering) than approximations
for any other fixed point. Additional distinctions between the LFP and
GFP (Greatest Fixed Point) are presented. A general selection criterion
for multiple solutions for functional equations and recursive methods is
proposed.
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1 Introduction

Recursive utility theory aims to describe classes of stationary intertemporal
utility functions that are tractable in an array of capital theoretic and macro-
dynamic applications. Optimal growth models (e.g. Beals and Koopmans [7])
have been the main application of recursive utility objective functions. The
underlying frameworks for deterministic recursive utility theories is cast within
discrete time infinite horizon models. The goal is to describe utility functions
with many of the attractive properties of stationary additive utility functions
with exponential discounting. The set of available consumption sequences are a
subset of the set of all real-valued sequences. This subset is the recursive utility
function’s domain.
Contemporary recursive utility function research focuses on proving a re-

cursive utility function solves a particular functional equation, the Koopmans
Equation. A solution is found as a fixed point of the equation’s correspond-
ing nonlinear operator, the Koopmans operator. The decision maker may be
the planner of optimal growth theory or an infinitely-lived household in general
equilibrium models. This agent has an underlying intertemporal preference
ordering over a sequence of alternative consumption sequences with generic
element C = {c1, c2, . . . , ct, . . .} where ct is the time-dated consumption at
time t = 1, 2, . . .. Koopmans ([24], [25]) proposed an axiomatic structure for
a consumer’s stationary preference ordering and deduced that a utility rep-
resentation had a recursive property: the utility function, evaluated at C, is
U (C) = W (c1, U (SC)) for some function y = W (x, y′), where S is the shift
operator SC = {c2, c3, . . .} and y = W (c1, y

′) aggregates current consumption,
c1, and future utility, y′, into a current utility value, y. The function W is the
aggregator. Here U is a recursive utility function and the Koopmans equation
is U (C) = W (c1, U (SC)) for each C.

Lucas and Stokey [28] turned Koopmans axiomatic theory around by taking
the aggregator as the building block or primitive concept defined on the real
variables x and y, a set of possible utility functions (or, simply the utility space)
on the available consumption sequences, and defined the Koopmans equation
as before, but now treating W as given and U as the unknown. Put differently,
given an aggregator and a utility space, the problem is to find a U satisfying
the condition U (C) = W (c1, U (SC)) for each C. If the Koopmans equation
has a solution in the utility space, then that function is a recursive utility func-
tion that represents some preference ordering over the available consumption
sequences. Of course, additional restrictions on the aggregator are essential to
show the Koopmans equation has a solution. Lucas and Stokey [28] in fact
proposed suffi cient conditions for the solution’s existence and uniqueness within
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the class of functions in their model’s utility space. Their proof verified that
the Koopmans operator is a contraction map on that utility space, which is the
Banach space of bounded real-valued functions defined on the set of all bounded
nonnegative real-valued sequences endowed with the sup-norm. The Koopmans
operator (belonging to W ), denoted by TW is a self-map on the utility space
defined for a given U in the utility space, and for each available C, by the
formula:

(TWU) (C) = W (c1, U (SC)) .

If this operator admits a fixed point: U (C) = TWU (C) for each C, then that
utility function is a recursive utility function. Their definition of the Koopmans
operator depends on the joint properties of the aggregator and the underlying
utility space specification. The Thompson aggregator case dictates a different
utility space underlies the Koopmans operator’s definition.
They prove the Koopmans operator satisfies Blackwell’s suffi cient condi-

tion for an operator to be a contraction mapping.1 This includes showing the
Koopmans operator is a monotone operator, that is U ≤ V (pointwise) implies
TWU ≤ TWV (pointwise). The Contraction Mapping Theorem then yields TNW θ
sup-norm converges to U , and consequently, for each C,

U (C) = lim
N→∞

TNW θ (C) = lim
N→∞

W (c1,W (c2, . . . ,W (cN,, 0))) .

Here TNW θ is theN
th iterate of TW θ according to the formula: TNW θ = TW

(
TN−1
W θ

)
for N ≥ 1,with θ (C) = 0 for each C, the zero function, and T 0

W θ ≡ θ.
The proof that the Koopmans operator is a contraction mapping depends

on their assumption that the aggregator satisfies a global Lipschitz condition
in its second argument and that Lipschitz constant is smaller than one. The
aggregators that satisfy this type of Lipschitz condition are classified now as
Blackwell aggregators. Several papers extend their approach to other aggre-
gator specifications. Boyd [12] and Becker and Boyd [8] discuss many extensions
in the Blackwell family. A number of papers published after Becker and Boyd’s
monograph extended the Blackwell model in novel ways where the aggregator’s
global Lipschitz condition fails and the Koopmans operator is not a contrac-
tion map (see Rincón-Zapatero and Rodriguez-Palmero ([33], [34]), Le Van and
Vailakis [27], and Martins-da-Rocha and Vailakis ([29], [30])).
Marinacci and Montrucchio [31] proposed aggregators that did not fit into

the previous literature. They named these examples as members of theThomp-
son aggregator class. For example, the KDW aggregator presented in Section
2 may fail to be a Blackwell aggregator for some interesting economic parame-
terizations. It is a member of their Thompson class in those situations. They
proposed new methods for solving the corresponding Koopmans equation for a
given Thompson aggregator. They built on the observation that the Koopmans
operator is, in many cases, easily shown to be a monotone operator. Moreover,
in their setup, this operator acts on a complete lattice of utility functions. The

1Becker and Boyd ([8], p. 48) prove a generalized Blackwell theorem for Riesz spaces of
the type appearing in our paper.
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Tarski Fixed Point Theorem’s (Tarski FPT) conditions hold and extremal
fixed points exist (and, may be distinct). One extremal fixed point is the small-
est, or Least Fixed Point (LFP) and other is the largest, orGreatest Fixed
Point (GFP). The Tarski FP and the existence of extremal solutions to the
Koopmans equation is a non-constructive result. We show in our Constructive
Recovery Theorem (CRT) (Section 3) these extremal fixed points exist using
successive approximations as the Tarski-Kantorovich Fixed Point Theo-
rem’s (TK FPT) conditions hold (see our Mathematical Appendix for the
exact form of this result as used here). Our proof turns on verifying an order
continuity property holds. It is a purely order theoretic condition and connects
to fundamental results obtained by Kantorovich [21]. Details are developed in
Section 3. The LFP is found by the iteration yielding the sequence

{
TNW θ

}
, just

as in Lucas and Stokey’s work [28]. This iteration indexed on the natural num-
bers can fail to yield the operator’s LFP without order continuity. Marinacci
and Montrucchio [31] did not verify this order continuity property in proposing
qualitative properties of the LFP and GFP solutions to the Koopmans equation.
Our CRT resolves fills this gap and yields qualitative features of the extremal
solutions, such as semi-continuity and concavity properties.
Kantorovich [21] and Marinacci and Montrucchio ([31], p. 1785) indicate

the LFP is the equation’s principal solution. Our CRT successive approx-
imation argument of the LFP states that the sequence of iterates

{
TNW θ

}
is

nondecreasing (pointwise) with each iteration and converges pointwise to the
supremum of that sequence, denoted by U∞, which is the LFP. This monotonic-
ity property of successive approximations is consistent with an interpretation
of a theoretical computational procedure where more information about the
LFP recursive utility function is added in each successive iterative step. The
idea is that the successive approximation procedure starts at the zero function
where there is NO information about any function in the utility space means
it is an “approximation” for any possible utility function. The first iteration
yields (TW θ) (C) = W (c1, 0) ≥ 0. This means we have an approximate util-
ity value for the infinite horizon if positive consumption is limited to a single
period only. In this manner, we know more about a prospective LFP utility
function than with the uninformative zero function input. In the second itera-
tion,

(
T 2
W θ
)

(C) = W (c1,W (c2, 0)) follows. There is more information about
the LFP in the sense that two consumption periods have been inputted instead
of just one period, as in the first step. At this point we see (by the monotonicity
property of the aggregator):

0 ≤ (TW θ) (C) = W (c1, 0) ≤
(
T 2
W θ
)

(C) = W (c1,W (c2, 0)) ,

and this is a better approximation to the LFP solution than obtained in the
first iteration. This is the information order interpretation of successive approx-
imation derived from the theoretical computer science literature; it is developed
in detail in Section 3 and used to motivate our interest in the Scott topology.
This consistency of successive approximations initiated by inputting the zero
function with the information ordering is an important property of the LFP
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construction. This is the basis for our first argument supporting the LFP as the
Koopmans equation’s principal solution.
We combine the order theoretic ideas in our working paper [9] derived from

Kantorovich [21] with topological order continuity ideas due to Scott [35] in
order to amplify our defense of the LFP as the principal solution. This is un-
dertaken in Section 4. First, a constructive existence argument facilitated by
verifying the operator’s Scott topological order continuity property is suffi cient
to prove the LFP exists. Our LFP construction applies Kleene’s Fixed Point
Theorem (Kleene FPT) (see the Appendix). It hypothesizes a Scott con-
tinuous operator on a complete lattice of functions and constructs the LFP by
a sequence of successive approximations. Our second theme is the LFP differs
from the GFP based on an information ordering or theoretical computation
perspective. We argue the LFP’s construction and approximation requires less
information according to the information ordering than any other solution. It
also differs in a qualitative way when viewed through the Scott topology’s prop-
erties. The Kleene FPT argument shows the sequence of approximations to
the LFP is eventually in each Scott neighborhood of the LFP. This cannot be
said within the CRT’s order convergence framework as it lacks any notion of a
neighborhood of the LFP. That is, order convergence of the successive approxi-
mations alone cannot inform us the sequence of iterations is eventually “close”
to the LFP.
This paper’s main result is the Least Fixed Point Existence and Con-

struction Theorem where the Koopmans operator is a Scott continuous self-
map on an order bounded subset of the space of possible utility functions. This
topological continuity notion is closely related to order continuity, but has subtle
differences owing to its topological setup. The Scott continuity property implies
a monotone sup —preservation property obtains for an isotone (or, nondecreas-
ing) net. In particular, this property obtains for the successive approximation
sequence based on iteration of the Koopmans operator with initial seed the zero
function, which Scott converges to its supremum.2

Scott [35] introduced his eponymous topology within the context of recursive
function theory and theories of computation within computer science. The use
of Scott’s topological ideas (as distinct from non-topological order convergence
notions) is uncommon in the economics literature. Vassilakis [38] is exceptional
on that score. He builds on Scott’s ideas and subsequent developments in logic
and computer science to untangle a major conceptual issue arising in game the-
ory whenever infinite regress arguments arise when postulating an equilibrium
solution concept. He links computability ideas to approximation ideas. There
is a similarity between his approximation ideas (and those in the computer sci-
ence literature) analogous to the links made here upon iterating the Koopmans
operator. However, we do not make the deeper connections to computability
theory addressed in Vassilakis’economic applications.
Section 2 reviews Thompson aggregators, sets up the underlying commodity
2Actually, there are many Scott limits! But the principal Scott limit is the LFP as shown

in Section 4. The principal Scott limit is the one preserved in monotonic sup-preservation
with Scott limits.
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space and the vector space of possible utility functions from which the func-
tional equation’s solutions are sought. Section 3 reviews order convergence and
continuity. Our CRT result appears there as well. We highlight the Koopmans
operator’s order continuity structure abstracted in the Scott continuity environ-
ment next. Section 4 presents basic Scott topology convergence and continuity
concepts followed by an argument supporting the existence and construction
of the LFP as the equation’s principal solution. We also argue why the Scott
continuity property further distinguishes the LFP from the GFP and why this
distinction is a selection criterion identifying the LFP as the Koopmans equa-
tion’s principal solution. The last section concludes the paper. A Mathematical
Appendix reviews basic material on partially ordered sets and lattices as well
as states the TK FPT and Kleene FPT as used in this paper. Basic Riesz space
concepts are also in that appendix. We follow the Riesz space conventions and
definitions in Aliprantis and Border [2] unless otherwise noted.

2 Thompson Aggregators and the Utility Func-
tion Space

2.1 Concave Thompson Aggregators

We introduce the defining properties of concave Thompson aggregators. We
modify Marinacci and Montrucchio’s [31] continuity axiom and concavity re-
strictions in order to implement our constructive recovery program.3

An aggregator is a function of two variables, (x, y), where x denotes current
consumption and y denotes a future utility value. Current consumption is always
nonnegative. Thompson aggregators are nonnegative functions and y ≥ 0
is assumed. Formally, W : R+ × R+ → R+ = [0,∞) is an aggregator, written
as W (x, y) ≥ 0 when (x, y) ≥ (0, 0). This aggregator function is also assumed
to be jointly continuous, monotone, and concave on R+ × R+. Additionally,
W (x, y) = y has, for each x, at least one solution y ≥ 0 and W (x, 0) > 0 also
holds for each x > 0.
Marinacci and Montrucchio [31] impose two additional conditions.

(M1) W is γ− subhomogeneous – there is some γ > 0 such that:

W (µγx, µy) ≥ µW (x, y)

for each µ ∈ (0, 1] and each (x, y) ∈ R2
+.

(M2) W satisfies the MM-Limit Condition: for a given α ≥ 1 and γ > 0
(from (M1)),

lim
t→∞

W (1, t)

t
< α−1/γ , (1)

with t > 0.
3Our concavity assumption is stronger than Marinacchi and Montrucchio’s [31] assumption

the aggregator is concave at y = 0 for each x ≥ 0. Bloise and Vailakis [11] use similar language
for their dynamic programming theory.
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The parameter α in (M2) is the economy’s maximum possible consumption
growth factor. Condition (M2) turns out to be an important joint restric-
tion on the preferences embodied in the aggregator function as well as on the
underlying commodity space, as might arise from properties of technologies in
production economies and/or endowments in exchange economies. Joint restric-
tions of this type routinely appear in treatments of the Blackwell aggregator
class. We list satisfaction of the MM Limit Condition as an explicit axiom that
might, or might not, obtain for a particular aggregator in order to emphasize
that some restrictions may apply on the underlying model’s deep preference and
technology parameters.
An aggregator satisfying the above conditions, along with (M1) and (M2), is

said to be a concave Thompson aggregator. One possible CES aggregator
is defined by the formula:

W (x, y) =
1

2

√
x+

1

2

√
y (2)

satisfies (M1) and (M2) and is a concave Thompson aggregator . A routine
calculations shows it does not satisfy a Lipschitz condition in y ≥ 0 given x
since supy≥0 (∂W/∂y) = +∞.
Koopmans, Diamond, and Williamson [26] introduced the KDW aggrega-

tor. It is defined on R+ × R+ by the formula

W (x, y) =
δ

d
ln
(
1 + axb + dy

)
where a, b, d, δ > 0. This aggregator satisfies (M1) with γ = b−1 and also
satisfies (M2). Becker and Rincón-Zapatero [9] verify these conditions obtain
in this case. The KDW aggregator is an example of a γ−subhomogeneous
aggregator that is NOT a homogeneous aggregator as is the CES example. The
KDW specification also illustrates why (M2) only requires γ > 0.
The KDW aggregator always satisfies a Lipschitz condition in its second

argument. It is a Blackwell aggregator when 0 < δ < 1, but it is not a Blackwell
aggregator whenever δ ≥ 1. If 0 < b < 1, then the KDW aggregator is concave
in x for each y, then W is also concave in (x, y) and a concave Thompson
aggregator since (M1) holds as γ = b−1 > 1. It is interesting to note that (M1)
applies to both current consumption and future utility arguments, whereas the
question of discounting or not is a property of the future utility argument alone
as well as parameter δ’s magnitude.
The KDW aggregator satisfies (M2). That is, the limit L = 0 in (1). Here,

just notice for x = 1,

W (1, y)

y
=

ln (1 + a+ dy)

y
→ 0 as y →∞

for any a, d ≥ 0. In this case, (M2) holds for any a ≥ 1.
Additional Thompson aggregator examples may be found in Marinacci and

Montrucchio [31] and Bloise and Vailakis [11].
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2.1.1 The Commodity Space

Recursive utility functions are defined on commodity spaces which are subsets
of sequence spaces. The underlying commodity space is the positive cone of
a principal ideal of the Riesz space of all real-valued sequences, s, with the
usual coordinatewise partial order and corresponding definitions of sup and inf
(coordinatewise). A generic point C = {ct} is a sequence indexed on the natural
numbers. The positive cone s+ = {C ∈ s : C ≥ 0} where 0 is the constant
sequence of zeroes. The inequality C ≥ 0 means ct ≥ 0 for each t. Reserve θ
for the real-valued zero function, θ (C) = 0, defined on this space. Define the
absolute value of C ∈ s, |C| , by the formula: |C| = sup {C, (−C)}. This holds
coordinatewise: |C| = {|c1| , |c2| , . . .}. The space s is a Dedekind complete Riesz
space. That is, each order bounded set in s has a sup (join) and inf (meet). An
order interval in s is a set of the form 〈C∗, C∗〉 = {C : C∗ ≤ C ≤ C∗}. An order
bounded subset of the commodity space is a subset of an order interval.
A point in s+ is strictly positive if each coordinate is positive. Given a

strictly positive vector ω ∈ s+, define the principal ideal in s:

Aω = {C ∈ s : |C| ≤ λω for some scalar λ > 0} .

The positive cone of Aω is (with the induced partial order inherited from s):

A+
ω = {C ∈ Aω : C ≥ 0} .

This is the commodity space in the anticipated economic applications. It is a
Dedekind complete Riesz space in its induced partial order.
Growth models have principal ideal commodity spaces with α ≥ 1. There are

two interesting economic examples: first, set ω = (1, 1, . . .), and Aω = `∞, the
vector space of all bounded real-valued sequences. This arises in models where
feasible consumption and capital accumulation programs are bounded due to
constraints on initial resources and the productive technology. For example,
there is a maximum sustainable capital stock as in the neoclassical one-sector
model. The second case arises when the productive technology admits a sus-
tainable, constant, maximum growth rate where ω =

(
α, α2, . . .

)
for α > 1. The

maximum growth rate is α − 1 > 0. The linear one-sector model with produc-
tion function f (k) = αk, α > 1, illustrates this case. Note l∞ ⊂ Aω ⊂ s when
α > 1. For each C ∈ Aω,

‖C‖∞ = inf {λ > 0 : |C| ≤ λω}

defines a lattice norm; λ is a scalar. The vector ω is an order unit in Aω. The
principal ideal (Aω, ‖•‖∞) together with its lattice norm is an AM-space with
unit ω since the lattice norm satisfies the relation ‖C

∨
C ′‖∞ = max {‖C‖∞

∨
‖C ′‖∞}

for each C,C ′ ∈ Aω.
Following ideas drawn from Boyd [12], and further developed in Becker and

Boyd [8], weighted norms are introduced on this principal ideal. These norms
are defined by strictly positive real-valued weight functions defined on Aω. For
example, the principal ideal’s lattice norm defines a weighted norm on that
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space turning it into both a Banach space and a Banach lattice. This norm
must agree with the lattice norm ‖•‖∞ since a Banach lattice may have only
one norm.
There is an equivalent norm that offers an economically useful interpretation

of the lattice norm. The α − norm, ‖•‖α, is defined for elements of Aω by the
formula:

‖C‖α = sup
t≥1

∣∣∣ ct
αt

∣∣∣ . (3)

The weighted normed vector space `∞ (α) is defined by the pair (Aω, ‖•‖α) where
α ≥ 1. We note that the sequences in this space are α− norm− bounded since
(|ct| /αt) ≤ λ < +∞. This is so as C ∈ Aω means there is some scalar λ > 0
such that |ct| ≤ λαt for each t. Hence, ‖C‖α ≤ λ < +∞ whenever C ∈ Aω.
This normed space is a vector lattice with the usual pointwise operations for
join and meet of two vectors. The positive cone of this space is denoted by
`+∞ (α), which is just A+

ω with the relative α−norm topology. The space `∞ (α)
is also a Banach lattice, so its positive cone is also α−norm closed. The lattice
norm is equivalent to the α−norm. This positive cone is also convex and has a
nonempty α− norm interior. The latter fact follows from the observation that
`∞ (α) is an AM-space with unit ω.

2.1.2 The Space of Possible Utility Functions

The Koopmans equation and its companion operator act on an underlying do-
main of possible or trial real-valued utility functions with common domain
`+∞ (α). These trial utility functions must also be bounded in an appropriately
defined weighted norm. Marinacci and Montrucchio’s [31] weight function is
chosen to obtain an order interval of possible utility functions on which the
solution to Koopmans’equation is sought.
Their weight function, ϕγ , is defined for each C ∈ `+∞ (α) by the formula:

ϕγ (C) = (1 + ‖C‖α)
1/γ

. (4)

This weight function is uniformly continuous convex function on `+∞ (α) with
respect to the α − norm topology.4 Here, the parameter 0 < γ ≤ 1 is taken
from (M1). This weight function as well the α− norm entangle preference and
technology parameters – the growth rate α is derived from a model’s technology
side while the parameter γ comes from the model’s aggregator side.

Definition 1 A function U : `+∞ (α)→ R is ϕγ− bounded provided

‖U‖γ := sup
C∈`+∞(α)

|U (C)|
(1 + ‖C‖α)

1/γ
< +∞.

4The norm ‖•‖α is a uniformly continuous convex real-valued function defined on the set
Aω . See Aliprantis and Burkinshaw ([3], p. 218). Hence, the function ϕγ (C) is α− norm

continuous as the composition of the continuous functions 1 + ‖C‖α and φ (x) = x1/γ for
x > 0. This also shows that for γ ≤ 1 that ϕγ is a convex function.
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The set of all ϕγ− bounded real-valued functions with domain `+∞ (α) is denoted
by Fαγ .

The zero function, θ, is the origin in Fαγ . It is a Dedekind complete Riesz
space with the usual pointwise partial order. Clearly the weight function ϕγ
satisfies ϕγ (θ) = 1 and ϕγ (C) ≥ 1 for each C. Moreover,

∥∥ϕγ∥∥γ = 1 and ϕγ

is an order unit in Fαγ . The corresponding positive cone is denoted by
(
Fαγ
)+
.

The normed vector space
(
Fαγ , ‖•‖γ

)
is an AM-space with unit ϕγ . Moreover,

it is a Banach lattice. Consequently, the positive cone is norm-closed and has a
nonempty norm interior.
The space

Cαγ :=
{
U ∈ Fαγ : U is ‖•‖α − continuous on `+∞ (α)

}
is a closed subspace of Fαγ . However, it is not a Dedekind complete Riesz space:
an increasing (isotone) sequence of continuous functions has a supremum and
that sup is lower semicontinuous, need not be continuous. The corresponding
positive cone is

(
Cαγ
)+
has a nonempty sup norm interior since ϕγ ∈

(
Cαγ
)+
is

an order unit.

2.2 The Koopmans Equation and Koopmans Operator

The aggregator approach to recovering recursive utility representations from an
underlying concave Thompson aggregator is expressed in terms of a functional
equation on the domain Fαγ . The Koopmans equation for recursive utility
is

U (C) = W (c1, U (SC)) . (5)

Define the shift operator S : `+∞ (α) → `+∞ (α) according to the rule C =
{c1c2, c3, . . .} 7→ SC = {c2, c3, . . .}. A solution of this equation is a recursive
utility function representation of the preference relation. Of course, it all de-
pends on what is meant by a solution. Proving this functional equation has a
solution turns on recasting the problem as demonstrating a corresponding non-
linear operator, the Koopmans operator (denoted by TW ), has a fixed point
in the desired function space of possible solutions. The Koopmans operator is
formally defined given a function U ∈

(
Fαγ
)+
by the following equation for each

C ∈ `+∞ (α) :
(TWU) (C) = W (c1, U (SC)) .

If TWU = U , then U is a solution to (5) and is a recursive utility represen-
tation for some underlying preference ordering on the commodity space. The
Koopmans operator for concave Thompson aggregators is easily shown to be a
monotone operator: U,U ′ ∈

(
Fαγ
)+
and U ≥ U ′ implies TWU ≥ TWU ′.
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2.3 The Order Interval
〈
θ, UT

〉
and the Self-Mapping Koop-

mans Operator

The next step is to limit the search for a fixed point to an order interval contained
in
(
Fαγ
)+
. The order interval’s least element is the zero function. The greatest

element is defined so that application of either the TK FPT or the related
Kleene FPT yields the LFP solution of the Koopmans equation. The Koopmans
operator must be a self-map on the order interval to carry out this plan. Define
Marinacci and Montrucchio’s [31] greatest element as the function UT (C) =
W (1, yα)ϕγ (C) for each C ∈ `+∞ (α). Here, the element yα > 0 is the solution
to W (1, yα) = α−1/γyα (shown to exist in [31] using (M1) − (M2)). UT is a
‖•‖α− continuous function and belongs to

(
Cαγ
)+
. Evidently UT ∈

(
Fαγ
)+
as

well. Define the order interval
〈
θ, UT

〉
⊂
(
Fαγ
)+
, where we now say that θ is the

bottom element and UT is the top element. Observe that
〈
θ, UT

〉
is a complete

lattice with its induced order taken as an order bounded subset of Fαγ . Clearly
UT ≥ θ (indeed, UT (C) > 0 for each C ≥ 0) and

∥∥UT∥∥
γ

= W (1, yα) < +∞
follows.
The order interval must have the properties TW θ ≥ θ and TWUT ≤ UT in

order to verify TW is a self-map on
〈
θ, UT

〉
given it is a monotone operator.

Evidently TW θ ≥ θ since for each C ∈ `+∞ (α) we have TW θ (C) = W (c1, 0) ≥ 0
as θ (SC) = 0. Based on the additional properties (M1) − (M2), Marinacci
and Montrucchio [31] prove TWUT ≤ UT , which implies TW is a self-map on〈
θ, UT

〉
.

3 Order Continuity, the Koopmans Operator,
the Information Ordering and the Principal
Solution

Order continuity of the Koopmans operator is understood in terms of order
convergent sequences. Order convergence depends on the Riesz space’s defining
partial order and lattice operations. The formal definition of order continuity is
technically a more restrictive property than the monotonic sup/inf-preservation
property. Only the latter is required for application of the TK FPT and deduc-
tion that the LFP and the GFP exist. Order convergence for sequences, suitably
abstracted, leads to us to Scott’s topology and a possible application of Kleene’s
FPT to the Koopmans operator’s LFP existence problem. The formal proof
that monotonic sup-preservation holds for the principal limit of monotonic Scott
convergent nets follows from showing TW is Scott continuous. The monotonic
sup-preservation for sequences, required for a TK FPT application, constitutes
special cases of monotonic sup-preservation for Scott convergent nets when the
sup of a monotonic sequence is treated as the principal limit of that sequence
in Scott’s topology (see Section 4).
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3.1 Order Convergent Sequences

We follow Kantorovich’s [21] order convergence and continuity ideas. They de-
pend only on each underlying Riesz space’s order structure. An order convergent
sequence is formally defined via the sequence’s upper and lower limits. They
exist as elements of (F γα ) by Dedekind completeness provided the given sequence{
UN
}
∈ (F γα ) is order bounded. A sharper claim is available for sequences

in
〈
θ, UT

〉
. Upper and lower limits are well-defined as the various sups and

infs exist in
〈
θ, UT

〉
since it is a σ− closed order interval (here N and K

are natural numbers), that is,
〈
θ, UT

〉
contains the sups and infs of countable

subsets.5

lim sup
N
UN = inf

N

(
sup
K≥N

UK
)

; (6)

lim inf
N
UN = sup

N

(
inf
K≥N

UK
)
.

The sequence
{
UN
}
is said to σ−order converge to U provided lim supN U

N =

U = lim infN U
N in

〈
θ, UT

〉
. If

{
UN
}
is isotonic (increasing): UN ≤

UN+1, then
{
UN
}
is a countable chain in

〈
θ, UT

〉
. Moreover, lim infN U

N =

supN
{
UN
}

=
∨
N U

N ∈
〈
θ, UT

〉
, using lattice notation for supremum in the

last expression. We also use the notation UN ↗
∨
N U

N (with some abuse
of notation). Similarly, if

{
UN
}
is antitone (decreasing): then

{
UN
}
is a

countable chain in
〈
θ, UT

〉
and lim supN U

N = infN U
N =

∧
N U

N ∈
〈
θ, UT

〉
.

Denote this by UN ↘
∧
N U

N . The reader is reminded that these convergence
relations hold pointwise, that is, for each C ∈ `+∞ (α). As

〈
θ, UT

〉
is a complete

lattice with its induced order, it is also a countably chain complete poset – a
requirement for applying the TK FPT.

3.2 Monotonically Sup/Inf-Preserved Sequences and the
CRT

Two particular sequences,
{
TNW θ

}
and

{
TNWU

T
}
, are found by iterating the

Koopmans operator starting with the initial seeds θ and UT , respectively. Here,
TW (TW θ) = T 2

W θ ≥ TW θ ≥ θ (by TW monotone) and so on for each N . That is,{
TNW θ

}
is isotone. Likewise,

{
TNWU

T
}
is antitone. Application of the TK FPT

only requires the Koopmans operator be a monotonically sup/inf-preserving
self-map on

〈
θ, UT

〉
. This implies these two iterations converge to their respec-

tive fixed points: the LFP for
{
TNW θ

}
and the GFP for

{
TNWU

T
}
. These fixed

points may differ.
One advantage in checking the Koopmans operator is monotonically sup/inf-

preserving lies in checking the condition for
{
TNW θ

}
and

{
TNWU

T
}
only. Other-

wise, we must verify TW is σ−order continuous: for each σ —order convergent
5Order convergence for sequences and nets is covered by Aliprantis and Border [2]. Our

constructions occur in Dedekind complete Riesz spaces. This avoids some subtle definitional
issues raised by Abramovich and Sirotkin [1] about the exact meaning of order convergence.
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sequence
{
UN
}
⊂
〈
θ, UT

〉
with limit U , {TWUN} σ —order converges to TWU .

The sequences appearing in this condition need not be monotone.
Kantorovich’s ([21], pp. 66 - 68) order continuity condition for the LFP is

basically monotonic sup preservation as used here. The Koopmans operator
is a monotonically sup-preserving self-map on

〈
θ, UT

〉
provided for any

isotone sequence
{
UN
}
:

TW

(
lim inf

N
UN
)

= TW

(∨
N
UN
)

=
∨

N
TWU

N .

Note that TW monotone implies
{
TWU

N
}
is an isotone sequence. Setting U =∨

N TWU
N , TW (U) = U follows and it is a fixed point of TW . In particular,

set TWUN = TNW θ and note T
N
W θ ↗

(∨
N T

N
W θ
)

= U∞ = TWU∞ is a fixed point
of TW . Likewise, the Koopmans operator is a monotonically inf-preserving
self-map on

〈
θ, UT

〉
provided for an antitone sequence

{
UN
}

:

TW

(
lim sup

N
UN
)

= TW

(∧
N
UN
)

=
∧

N
TWU

N .

Monotonicity of TW implies
{
TNWU

T
}
is antitone. Let U∞ =

(∧
N T

N
WU

T
)
and

conclude TW (U∞) = U∞ is also a fixed point of TW .
The Koopmans operator is a monotonically sup/inf-preserving self-

map on
〈
θ, UT

〉
if it is both monotonically sup and monotonically inf preserving

on
〈
θ, UT

〉
. That the Koopmans operator is monotonically sup/inf-preserving

rests on the joint continuity assumption imposed on each concave Thompson ag-
gregator. This joint continuity property also shows up in our LFP Constructive
Existence Theorem (Section 4). The main observation about sup/inf preserva-
tion is demonstrated next. This result builds on the fact TW is a monotone
self-map on

〈
θ, UT

〉
.

Proposition 2 Suppose W is a concave Thompson aggregator. Then
〈
θ, UT

〉
is a countably chain complete poset set and the associated Koopmans operator
is a monotonically sup/inf-preserving self-map on

〈
θ, UT

〉
.

Proof. Suppose
{
UN
}
≡
{
UN
}∞
N=1

is a sequence of ϕγ – bounded functions

in the order interval
〈
θ, UT

〉
⊂ (F γα )

+. Clearly both the sup and inf of this
sequence exist as elements of

〈
θ, UT

〉
. This implies

{
UN
}
is a a countably chain

complete set in
〈
θ, UT

〉
provided it is a chain. Therefore,

〈
θ, UT

〉
is a countably

chain complete poset follows immediately as
{
UN
}
may be an arbitrarily chosen

countable chain in
〈
θ, UT

〉
.

The order interval
〈
θ, UT

〉
evidently contains a smallest and largest element.

Now suppose
{
UN
}
is any monotone increasing sequence of functions in

〈
θ, UT

〉
.

By countable chain completeness, we find
∨
UN exists since each UN ≤ UT .

Hence, there is a function U =
∨
UN ∈

〈
θ, UT

〉
. In fact, UN↗U pointwise

on `+∞ (α). That is limN→∞ UN (C) = U (C) for each C ∈ `+∞ (α). Since W is
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increasing in its second argument and continuous in its second argument, (T1)
implies for each C ∈ `+∞ (α) the following equalities:∨

[TWU
N ] (C) =

∨
W
(
c1, U

N (SC)
)
(by definition of TW )

= lim
N
W
(
c1, U

N (SC)
)
(by the monotone property of W )

= W
(
c1, lim

N
UN (SC)

)
(by continuity of W )

= W (c1, U (SC))

= TW

(∨
UN
)

(C) .

Hence, the Koopmans operator is monotonically sup-preserving. Apply the
analogous argument for monotone decreasing sequences

{
UN
}
, bounded below

by the zero function. This shows that TW is also monotonically inf-preserving.
Hence, the Koopmans operator is monotonically sup/inf-preserving.

This Proposition’s proof seemingly depends only on assumption that the
aggregator is jointly continuous. However, the other properties come into play
when verifying TW is a monotone self-map on the order interval

〈
θ, UT

〉
⊂

(F γα )
+. The related Scott continuity property for monotonic nets is demon-

strated in Section 4. Application of the Proposition yields the Constructive
Recovery Theorem, which is our version of Marinacci and Montrucchio’s [31]
Recovery Theorem. The order continuity property shown above is the place
where our approach differs from theirs.

Theorem 3 (Constructive Recovery Theorem (CRT)). Suppose W is a con-
cave Thompson aggregator satisfying (M1) and (M2).

1. There is a ‖•‖α− upper semicontinuous function U∞ ∈
〈
θ, UT

〉
such that

TWU
∞ = U∞.

2. There is a ‖•‖α− lower semicontinuous function U∞ ∈
〈
θ, UT

〉
such that

TWU∞ = U∞.

3. U∞ is the least fixed point in
〈
θ, UT

〉
, U∞ is the greatest fixed point in〈

θ, UT
〉
, and fix(TW ) is a countably chain complete subset of

〈
θ, UT

〉
.

Proof. (1): Iterate TW using UT as the initial seed. That is, for each natural
number, N , let

UN = TWU
N−1 and U0 ≡ UT .

Clearly for each N ≥ 1,

θ ≤ UN ≤ UN−1 ≤ · · · ≤ U1 ≤ UT .

Hence, there is a function U∞ such that

U∞ =
∧
N

UN ∈
〈
θ, UT

〉
14



since
〈
θ, UT

〉
is a countably chain complete subset of (F γα )

+.
The function UT is ‖•‖α− continuous on `+∞ (α). Hence, since, by (T1),

W is a continuous function on R2
+, the function U

1 = TWU
T is also a ‖•‖α−

continuous function on `+∞ (α), and so on for each UN . Hence, U∞ is a ‖•‖α−
upper semicontinuous real-valued function on `+∞ (α) as it is the pointwise infi-
mum of the collection of continuous functions,

{
TNWU

T
}
. Proposition 2 shows

that TW is monotonically sup/inf-preserving. Therefore, TW satisfies the hy-
potheses of the TK FPT. Hence, we may conclude U∞ is a fixed point of the
Koopmans operator. That is,

TWU
∞ = U∞ =

∧
N

TNWU
T .

Moreover U∞ is the Koopmans operator’s GFP in
〈
θ, UT

〉
. Suppose U ∈

fix(TW ). Then U ≤ UT implies upon iteration that TNWU = U ≤ TNWU
T for

each N . Passage to the limit as N →∞ implies U ≤ U∞.
(2): A parallel argument establishes that there is also a LFP in

〈
θ, UT

〉
,

denoted U∞ =
∨
N

TNW θ. It is found by iterating TW with the initial seed, θ.

Moreover, U∞ is a ‖•‖α− lower semicontinuous real-valued function on `+∞ (α)
as the pointwise supremum of the family of continuous functions

{
TNW θ

}
.

(3): Let fix(TW ) denote the nonempty set of fixed points belonging to our
Koopmans operator in the order interval

〈
θ, UT

〉
. Balbus, et al (see [5], Theorem

7, p. 109) implies fix(TW ) is a countably chain complete poset in
〈
θ, UT

〉
with

its induced order.
Recall TNW θ ↗ U∞ says that each TNW θ approximates U∞ from below. This

construction of U∞ receives additional attention in Sections 3.3 and 4. Con-
cavity of U∞ follows since W is a concave Thompson aggregator and TNW θ is
concave for each N (apply Boyd’s Lemma [12], p. 331).
The CRT implies that IF U∞ = U∞ ≡ U∗, then U∗ is the unique ‖•‖α−

continuous ϕγ-bounded real-valued function in
〈
θ, UT

〉
satisfying the Koopmans

equation when W is a concave Thompson aggregator. That is, in this situation
U∗ ∈ (Cγα)+ as well! The interesting problem at this point is to provide condi-
tions under which there is a unique ‖•‖α− continuous and ϕγ-bounded solution
to this aggregator’s Koopmans equation. The uniqueness question is addressed
in Marinacci and Montrucchio’s papers ([31], [32]). We also address this prob-
lem using concave operator theory in our working papers ([9], [10]). The main
diffi culty, as seen in our aforementioned working papers, is extremal fixed points
may differ at C = 0 when the commodity space is `+∞ (α = 1) and W (0, 0) = 0
holds (as with our examples). Uniqueness theorems obtained to date apply on
the nonempty norm-interior of `+∞, so it is the case that LFP and GFP agree
on that subset of the commodity space and the recursive utility function so
obtained is norm-continuous on that set as well.
The CRT has implications for dynamic optimization models (e.g. optimal

growth theory) with a recursive utility objective defined on a sequence space.
The CRT’s LFP (GFT) is norm lower (upper) semicontinuous. Suppose that
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the commodity space is `+∞ and the Koopmans equation has a unique solution
in
〈
θ, UT

〉
and is an element of the norm interior of this commodity space.

This recursive utility function is norm continuous on that subset of `+∞. The
question of existence of an optimum and its continuity in underlying parameters,
taken as an application of the Maximum Theorem, is problematic. The required
norm compactness condition is not satisfied in many applications. Marinacchi
and Montrucchio ([31], p. 1790; p. 1801 (iii)) show that given the uniqueness
of the Koopmans operator’s fixed point on the norm interior of `+∞, the LFP
construction’s LFP is continuous in the relative product topology on that do-
main. Product compact feasible sets are common in optimal growth models.
The Maximum Theorem’s hypotheses may be satisfied (provided the feasible
set is a subset of the norm interior of `+∞ (this is a restriction). The order
convergence based CRT is consistent with this viewpoint since it is a pointwise
convergence concept. Marinacchi and Montrucchio’s proof that the recursive
utility is continuous in the product topology, at least on the norm interior of
`+∞, applies. This is one advantage of the CRT as it yields both the LFP and
GFP with their corresponding norm semicontinuity properties. The LFP is
product continuous. Given the uniqueness hypothesis, the LFP also inherits
the GFP’s upper semicontinuity property in the product topology. Hence, the
LFP is product continuous. The LFP in the Scott topological theory cannot be
shown to have an upper semicontinuity property on the norm interior of `+∞, as
occurs in the CRT framework. A GFP might not exist within the Scott topology
framework. By comparison, the Scott topological continuity property offers in-
formation about the quality of the successive approximations to the LFP that is
unavailable using order continuity alone, as will be argued in more detail below.

3.3 Monotonic Sup-Preservation and LFP as the Principal
Solution: An Information Ordering Interpretation

An intuitive understanding of the monotonic sup-preserving property of the
Koopmans operator is available for the special case where

{
UN
}

=
{
TNW θ

}
,

which is an isotone sequence. Let U∞ ≡ lim infN T
N
W θ. with T

N
W θ ↗ U∞, the

LFP.
The corresponding pointwise expression, given C ∈ `+∞ (α) is,

(
TNW θ

)
(C)↗

U∞ (C). Set (TW θ) (C) = U1 (C) = W (c1, 0) and so for each N ≥ 1. Then:(
TNW θ

)
(C) = (TWU

N−1) (C) = W (c1,W (c2,W (c3, . . . ,W (cN , 0) · · · ))) , or
0 = θ (C) ≤ U1 (C) ≤ U2 (C) ≤ · · · ≤ U∞ (C) .

Rewriting this in aggregator terms, the isotonic sequence of “finite horizon”
approximations of the infinite horizon value U∞ (C), yields:

0 ≤W (c1, 0) ≤W (c1W (c2, 0)) ≤ · · · ≤ U∞ (C) .

Successive approximations starting from θ provide approximations, from be-
low, for the value U∞ (C). Each approximation incorporates the consumption
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of a finite number of consecutive periods further interpreted as consumption
over a finite horizon of length N . This truncation assigns zero consumption
to all periods beyond N . More consumption periods are incorporated in the
N th approximation than its predecessors. In this sense, there is more infor-
mation in W (c1,W (c2, 0)) about U∞ (C) than provided by W (c 1, 0), and so
on. This theoretical computation of U∞ (C) starts with no information about
U∞ (C) as θ (C) = 0 for each C. This interpretation is consistent with the
information ordering notion in the computer science literature on theoretical
computation and successive approximation.6 Formally interpret the inequality
TNW θ ≤ TN+1

W θ to also mean iterate TN+1
W θ has more information than iter-

ate TNW θ. Clearly, supN T
N
W θ = U∞ contains more information than any iterate:

TNW θ ≤ U∞. The bottom element, θ, is interpreted as totally uninformative
about U∞ as θ ≤ TNW θ for each N . Successive approximation improves on the
information known about U∞ at each step.
The Koopmans operator is monotonically sup-preserving means:

TW

(
lim inf

N
TNW θ

)
= lim inf

N
TNW θ. (7)

This equality is the same as requiring:

TW

(
lim inf

N
TNW θ

)
≤ lim inf

N
TNW θ, (8)

and
TW

(
lim inf

N
TNW θ

)
≥ lim inf

N
TNW θ. (9)

The right-hand side of inequality (9) is just the ∨NTNW θ follows since TW is
monotone and ∨NTNW θ ≥ TKW θ for each natural numberK. Apply the Koopmans
operator to obtain TW (∨NTNW θ) ≥ T

(
TKW θ

)
≥ TKW θ. Take the supremum of the

right-hand side (after changing the indices from K back to N). This verifies
(9).
Inequality (8) is more interesting as it has a theoretical computation inter-

pretation suggesting why monotonic sup-preservation for the sequence
{
TNW θ

}
is important. Recast this inequality as

TW

(
lim inf

N
TNW θ

)
≤ lim inf

N
TNW θ = U∞.

It stands to reason the Koopmans operator applied to U∞ = lim infN T
N
W θ

again CANNOT yield more information about U∞. This is the interpretation
of inequality (8). Suppose TW

(
lim infN T

N
W θ
)
added “more information”about

U∞. That is, TW
(
lim infN T

N
W θ
)
> lim infN T

N
W θ. Vickers ([39], p. 96) reminds

us that this new information can only be “available to us by waiting until the
Crack of Doom (the time when all infinite computations are completed), and

6See Gierz et al ([16], pp. xxviii-xxix; p. 135) Goubault-Larrecq ([17], pp. 56-64),
Stoletenberg-Hansen, et al ([36], p.23), and Vickers [39]. We formalize an abstract defini-
tion of the information ordering in Section 4.
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that is too late.” Hence, it is reasonable to conjecture the Koopmans operator
satisfies (8), and the monotonic sup-preservation condition follows.
This intuitive importance of monotonic sup-preservation with the informa-

tion ordering interpretation is our first argument in favor of U∞ as the Koop-
mans equation’s principal solution, or principal fixed point (after Kan-
torovich [21]). Each step in the iterative procedure, initiated at θ, requires
knowledge of a finite number of coordinates of the given consumption sequence
and the form of the aggregator function only. Iteration from the top element
fails on this issue as it requires the exact value ‖C‖α and knowing the entire
infinite horizon consumption stream. It would seem more information must be
secured to carry through the iteration initiated at UT than at θ. Calculat-
ing the value U∞ (C), or a “good approximation” of it, requires information
on a finite string of consecutive consumption dates. Calculating U∞ (C), or a
“good approximation”of it, demands inputting the complete sequence, C. From
a theoretical computational perspective the approximation of the LFP value
U∞ (C) by successive approximation (from below) offers informational advan-
tages over the succession of approximations (from above) to U∞ (C). Further-
more, U∞ ≤ U∞ suggests U∞ encapsulates more information (computationally)
than U∞. In this respect, the LFP has a minimal information ordering inter-
pretation among all fixed points of the Koopmans operator in

〈
θ, UT

〉
. For each

U ∈ fix (TW ) ⊂ 〈U∞, U∞〉, U 6= U∞, the LFP is always approximated using less
information than would be necessary to approximate U and in particular, U∞.
However, the GFP is the only other fixed point known to be approximated by
an iterative construction.
One drawback of the order theoretic approach is there is no way to deduce the

speed at which the successive approximations converge since order convergence
is not formalized in a metric space. More modestly, there is no way to infer
if a particular iterate, TNW θ is “close” to U∞, a general point emphasized by
Gierz et al ([16], p. xxvii). Since there is no topology in this context, it is
impossible to know if an iterate is eventually in a neighborhood of U∞ and, in
that intuitive sense, a “good approximation of U∞.” The Scott topology and
its related continuity idea allows us to formally show “TNW θ is eventually in
a Scott neighborhood of the point U∞.” It is a valid statement about “good
approximations” in Scott’s topology, as applied to Scott convergent nets, and
where ∨nTNW θ is the principal Scott limit of the net

{
TNW θ

}
. Formalizing this is

the subject of the next section.

4 Scott Continuity of TW and Construction of
Its Least Fixed Point

The existence of the Koopmans operator’s LFP, U∞, utilizes monotonic sup-
preservation of the lower limit (i.e., the sup) of

{
TNW θ

}
and the underlying

Riesz space’s order structures. No topological meaning is associated with an
order convergent sequence (or, more generally, net). The Koopmans operator’s
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monotonic sup-preservation property for sequences, abstracted to nets describes
a topological continuity idea. The possibility for unifying order and topological
properties for the Koopmans operator falls into place.
Scott [35] proposes a topology for a complete lattice by abstracting the no-

tions of a lower limit for sequences and lower semicontinuity for real-valued
functions on a metric space. His motivation arose from foundational questions
in computational theory. His induced topology permits consideration of con-
tinuous self-maps on a complete lattice. The literature following Scott’s funda-
mental paper refers to the induced topology as the Scott topology. Assigning
the Scott topology to

〈
θ, UT

〉
turns that set into a T0− space: given the points

U and V in
〈
θ, UT

〉
, there is a Scott open set containing one and not the other

point. The space
〈
θ, UT

〉
endowed with its Scott topology is neither a T1 space

nor a T2 space. Convergent nets may have more than one limit!
There are two ways to define the Scott topology. One specifies the open sets

directly. The other, which we implement, defines the class of convergent nets
and their limits. Sequences hardly suffi ce in this setup. Both approaches are
found in the literature. Kelly ([22], [23]) shows how to specify a topology by
describing convergent nets on the given space. It is an analytical approach with
a direct link to our proof the Koopmans operator is Scott continuous. Both
descriptions of Scott’s topology are presented in Gierz et al [16].7 Scott’s [35]
original paper also develops both approaches.
We prove the Koopmans operator is a Scott continuous self-map on the

order interval
〈
θ, UT

〉
with its Scott topology. This order interval’s complete

lattice structure plays an integral role in this demonstration. The monotonic
sequence

{
TNW θ

}
once again constructs the LFP, U∞, by successive approxima-

tions, but Kleene’s FPT rather than the TK FPT is the foundation. Kleene’s
FPT (adapted to our setup) requires the monotonicity of the Koopmans oper-
ator and the generalization of monotonic sup-preservation for Scott convergent
nets. That the sequence

{
TNW θ

}
yields, in its Scott limit, the LFP, is a surpris-

ing conclusion given that we must use nets to describe the topology. However,
monotonic sequences are particular monotonic nets where the natural numbers
form the net’s directed index set. A similar construction of the largest fixed
point, U∞, is not available using the Scott topological structure! Scott’s topo-
logical setup abstracts properties enjoyed by real-valued lower semicontinuous
functions defined on a metric space and may differ from related properties char-
acteristic of upper semicontinuous functions. For this reason, we argue that the
Scott continuity property of the Koopmans operator, and the subsequent fixed
point theory (via Kleene’s FPT), form another rationale for calling the LFP,
U∞, the principal solution to the operator equation, TWU = U ∈

〈
θ, UT

〉
.

A net u : Λ→
〈
θ, UT

〉
is a mapping from a directed set, Λ, to the complete

lattice
〈
θ, UT

〉
. Denote the net by setting u (λ) = Uλ ∈

〈
θ, UT

〉
. The set Λ

(with generic elements λ, µ, and ν) is the net’s index set. This set is directed
by a binary relation ≥ which is reflexive and transitive. Moreover, if λ and µ

7See Gierz, et al ([16], pp. 131-138) for detailed motivation, formal definitions of Scott
open sets, and the formal development of his topology via net convergence.
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are elements of Λ, then there is a ν ∈ Λ such that ν ≥ λ and ν ≥ µ. Write
this net as

(
Uλ
)
λ∈Λ

or, when the meaning is clear, as
(
Uλ
)
. We say that

(
Uλ
)

is a net in
〈
θ, UT

〉
. This net is monotonic (isotonic) when µ ≥ λ implies

Uµ ≥ Uλ. Monotone nets play an important role in Scott’s topological theory.
For any net

(
Uλ
)
in
〈
θ, UT

〉
define the net’s lower limit, or lim inf, by

lim inf
λ

(
Uλ
)

= sup
λ

[
inf
µ≥λ

Uµ
]
. (10)

Scott [35] refers to the net’s lower limit as its principal limit. We adopt
this terminology as well and justify it below. Note that if

(
Uλ
)
is an isotonic

net in
〈
θ, UT

〉
, then lim infλ

(
Uλ
)

= supλ
(
Uλ
)
. This follows as the sup exists

in
〈
θ, UT

〉
as it is a complete lattice in the induced order inherited from Fαγ .

Clearly
(
Uλ
)
order bounded (from below by θ) implies infµ≥λ U

µ = Uλ exists
as well for each λ ∈ Λ.
Scott’s topology is defined by describing the class of Scott convergent nets.

Let S denote the class of those pairs
((
Uλ
)
, U
)
such that

U ≤ lim inf
λ

(
Uλ
)
. (11)

For such a pair we say that U is an S− limit of the net
(
Uλ
)
and we denote

this limit (
Uλ
) S→ U . (12)

The convergence conditions and inequality (11) hold pointwise for each C ∈
`+∞ (α). That is, (11) is equivalent to the pointwise condition:

U (C) ≤ lim inf
λ

(
Uλ (C)

)
= sup

λ

[
inf
µ≥λ

Uµ (C)

]
. (13)

The monotonic net
(
Uλ
)
has the property

(
Uλ
) S→ Uµ for each µ ∈ Λ.

That is, each Uµ is an S− limit of the net
(
Uλ
)
! The reason is simple: each

Uµ ≤ supλ
(
Uλ
)
; hence Uµ ≤ lim infλ

(
Uλ
)
. This shows a net’s S− limit

may not be unique. For an arbitrary net in
〈
θ, UT

〉
we refer to the particular

limit function, lim infλ
(
Uλ
)
, as the net’s principal limit to distinguish it from

other points in
〈
θ, UT

〉
which are also limits for this net. The Scott topology

on
〈
θ, UT

〉
is definitely NOT Hausdorff! This description of net convergence

defines the Scott topology on the complete lattice
〈
θ, UT

〉
.

Note that a Scott open set O ⊆
〈
θ, UT

〉
, as defined through the convergent

net description, has two properties: First, if V ∈ O and U ≥ V , then U ∈ O.
Second, if the net

{
Uλ
}
is also a directed set in O and ∨λUλ ∈ O, then there ex-

ists an index µ ∈ Λ such that Uµ ∈ O. An isotonic net is a directed set. Hence,
the latter condition implies each Scott convergent isotonic net is eventually in a
neighborhood of its principal limit. This is precisely the concept needed to infer
a successive approximation sequence such as

{
TNW θ

}
, viewed as an isotonic net

with principal limit ∨NTNW θ = U∞, is eventually in each Scott neighborhood
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of U∞. Since the net (sequence) is isotonic, for a given neighborhood of U∞,
once TNW θ belongs to that neighborhood, so will each successive iteration by the
Koopmans operator’s monotonicity property. Our intuitive understanding of
the meaning of

{
TNW θ

}
produces “good approximations”of U∞ is that succes-

sive approximations produces a net (sequence) that is eventually in any given
neighborhood of U∞.

The Koopmans operator is Scott continuous if and only if for each
(
Uλ
) S→

U , the corresponding values
(
TWU

λ
) S→ TWU . That is, the abstract lower

semicontinuity property holds (pointwise):

(TWU) ≤ lim inf
λ

(
TWU

λ
)

(14)

whenever
(
Uλ
) S→ U . Writing out the pointwise version of the above inequality

in terms of the underlying Thompson aggregator yields the condition

W (c1, U (SC)) ≤ lim inf
λ

[
W
(
c1, U

λ (SC)
)]
. (15)

The next result specializes a general theorem in Gierz et al ([16], Proposition
II-2.1, p. 157) for our setup. We verify the Koopmans operator satisfies its
necessary and suffi cient conditions for the Scott continuity in the upcoming
Scott Continuity Proposition. Their general theorem links the formal notion of
continuity in the Scott topology with preservation of suprema for directed sets
and the preservation of suprema for isotonic nets. The implication is we can
limit our analysis to checking the preservation of suprema for isotonic nets. This
implies we need verify the monotonic sup-preservation property for isotonic nets
in order to apply the Kleene FPT to our LFP construction.

Proposition 4 The Koopmans operator is a Scott continuous self-map on
〈
θ, UT

〉
if and only if it is an order-preserving (monotone) operator and for any net

(
Uλ
)

in
〈
θ, UT

〉
such that lim infλ

(
Uλ
)
and lim infλ

(
TWU

λ
)
both exist,

TW

(
lim inf

λ
Uλ
)
≤ lim inf

λ

(
TW

(
Uλ
))

(16)

Inequality (16) expresses the abstract lower semicontinuity inequality (14)
for the case where U = lim infλ U

λ is the net’s principal limit. Note that lim infλ(
Uλ
)
and lim infλ

(
TWU

λ
)
both exist since

〈
θ, UT

〉
is a complete lattice in its

induced order. The nets appearing in this proposition may, or may not, be
monotonic. The pointwise analog of (16) expressed in terms of the Thompson
aggregator is

W

(
c1, lim inf

λ
Uλ (SC)

)
≤ lim inf

λ
W
(
c1, U

λ (SC)
)
, (17)
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where

TW

(
lim inf

λ
Uλ (C)

)
= W

(
c1, lim inf

λ
Uλ (SC)

)
, and

lim inf
λ

(
TW

(
Uλ (C)

))
= lim inf

λ
W
(
c1, U

λ (SC)
)
.

Since the Koopmans operator is already known to be a monotone operator it
suffi ces to verify (16) obtains for an arbitrary convergent net of functions in〈
θ, UT

〉
in order to conclude the Koopmans operator is Scott continuous.

Observe that if
(
Uλ
) S→ U , then U ≤ lim infλ U

λ, so TW monotone implies

TWU ≤ TW
(

lim inf
λ
Uλ
)
.

Hence, if (16) also holds, then the previous inequality yields

TWU ≤ TW
(

lim inf
λ
Uλ
)
≤ lim inf

λ

(
TW

(
Uλ
))
,

which is the abstract lower semicontinuity inequality (14) and TW is Scott con-
tinuous. The following Continuity Proposition sets up the proof that fix(TW ) is
nonempty and has a LFP.

Proposition 5 (Scott Continuity Proposition) TW is a Scott continuous self-
map on

〈
θ, UT

〉
.

Proof. We prove the pointwise inequality (17) obtains. Fix a consumption
sequence C ∈ `+∞ (α). Note that a concave Thompson aggregator function,
W (x, y), is jointly continuous on R2

+. In particular, given c1 ≥ 0, the function
W (c1, •) is a lower semicontinuous function on R∗+ = [0,+∞], the nonnegative
extended real numbers endowed with its usual topology. Now consider

(
Uλ (C)

)
and

(
Uλ (SC)

)
as defining nets in R∗+. In fact, the values taken by the nets for

each index are nonnegative real numbers as each Uλ is ϕγ − bounded. Indeed,
each Uλ ≤ UT implies

∥∥Uλ∥∥
γ
≤
∥∥UT∥∥

γ
. This lower semicontinuity property

for the aggregator implies:

W

(
c1, lim inf

λ
Uλ (SC)

)
≤ lim inf

λ
W
(
c1, U

λ (SC)
)
,

which is (17). Therefore (16) holds and TW is Scott continuous by the previous
Proposition.

Extend the information ordering to monotonic nets by interpreting Uµ ≤
Uλ as Uλ is more informative than Uµ when λ, µ ∈ Λ and µ precedes λ
in the directed index set Λ. With this interpretation of the monotone nets(
Uλ
)
and

(
TW

(
Uλ
))
we observe by the abstract lower semicontinuity prop-

erty that TW (U) ≤ lim infλ TW
(
Uλ
)
when the monotonic net

(
Uλ
) S→ U .
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Now,
(
TW

(
Uλ
))
is also a monotonic net since TW is a monotone operator.

Then lim infλ TW
(
Uλ
)

= supλ TW
(
Uλ
)
contains more information than TW (U)

by the information ordering. If TW is applied to the principal limit of
(
Uλ
)
,

lim infλ U
λ = supλ

(
Uλ
)
, then, Vickers ([39], p.96) “Crack of Doom”metaphor

applied to these nets tells us the information ordering inequality:

TW

(
sup
λ

(
Uλ
))

= TW

(
lim inf

λ
Uλ
)
≤ lim inf

λ

(
TW

(
Uλ
))

= sup
λ
TW

(
Uλ
)

must hold, at least for monotonic nets. Thus, combining a monotone operator
with Scott continuity applied to “successive approximations”should be a con-
sistent way of adding information at each computational stage no matter how
many iterations have been undertaken and whether the index set Λ is an arbi-
trary directed set or Λ = N. That is, the use of nets to model a series of abstract
computations generalizes the idea of computations undertaken by iteration over
the natural numbers. In particular, inequality (16) is verified for the Koopmans
operator.

Definition 6 The Koopmans operator TW is said to preserve the supremum
of the monotonic net

(
Uλ
)
in
〈
θ, UT

〉
whenever

TW

(
lim inf

λ

(
Uλ
))

= lim inf
λ

(
TWU

λ
)
. (18)

Put differently, TW preserves the supremum of monotonic nets provided that

TW
(
sup

(
Uλ
))

= sup
(
TWU

λ
)
.

These suprema correspond to the principal limits of the monotonic nets
(
Uλ
)

and
(
TWU

λ
)
, where the latter net is also monotonic as TW is a monotone op-

erator. This is a subtle distinction with respect to monotonic sup-preservation
for order convergent sequences. Notice that if this property holds for arbi-
trary monotone nets, then it holds in particular for monotonic (nondecreasing)
sequences, such as

{
TNW θ

}
PROVIDED only the principal limits are to be pre-

served. This observation is the key to reducing the existence of a fixed point for
the Koopmans operator to the application of the Kleene FPT (for monotoni-
cally sup−preserving sequences). The smallest fixed point, U∞, is constructed
as before by iteration of TW indexed on the natural numbers with initial seed
θ. The existence of the smallest fixed point by successive approximations is
available even though sequences do not suffi ce to describe the Scott topology.
Hence, the key step in showing this construction applies is the following Corol-
lary to the Scott Continuity Proposition. It applies to the principal limit in the
relevant Scott convergent nets.

Corollary 7 TW preserves the supremum of each monotonic net
(
Uλ
)
in
〈
θ, UT

〉
.

Proof. Let
(
Uλ
)
be a monotonic net in

〈
θ, UT

〉
with its principal Scott

limit ∨λUλ. The net
(
TWU

λ
)
is also a monotonic net in

〈
θ, UT

〉
since TW
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is monotone. Its principal Scott limit is ∨λTWUλ. Since TW is a Scott contin-
uous self-map on

〈
θ, UT

〉
, inequality (16) holds in the following form:

TW

(∨
λ

Uλ

)
≤
∨
λ

(
TWU

λ
)
.

The converse inequality follows since TW is a monotone operator. To see this,
note that for each index µ ∈ Λ, ∨

λ

Uλ ≥ Uµ,

and by TW monotone,

TW

(∨
λ

Uλ

)
≥ TWUµ.

The supremum of the right-hand side, after changing back to the λ index nota-
tion, is just ∨λTWUλ. Hence,

TW

(∨
λ

Uλ

)
≥
∨
λ

(
TWU

λ
)
.

Therefore,

TW

(∨
λ

Uλ

)
=
∨
λ

(
TWU

λ
)
,

and the Koopmans operator preserves the supremum of monotonic nets.
The main result in this section is the existence of a smallest or least fixed

point for the Koopmans operator and its construction by successive approxima-
tions.

Theorem 8 (Least Fixed Point Existence and Construction Theorem) The Scott
continuous Koopmans operator has a least fixed point, U∞. Moreover, U∞ =
∨NTNW θ and it is constructed by successive approximations indexed on the nat-
ural numbers.

Proof. The existence and construction of U∞ follows from the proof of Kleene’s
FPT in Goubault-Larrecq ([17], p.64) as TW preserves the supremum of each
monotonic net

(
Uλ
)
in
〈
θ, UT

〉
. In particular, this property holds for the prin-

cipal Scott limit of the monotone sequence
{
TNW θ

}
↗ U∞ = ∨NTNW θ = TWU∞

by the previous corollary. Thus, U∞ ∈fix(TW ).
Suppose that U ∈fix(TW ). Then θ ≤ U and TW monotone implies TW θ ≤

TWU = U . Iterate this to yield the inequality TNW θ ≤ U . Hence, passing to the
limit we find U∞ ≤ U and U∞ is the least fixed point of the Koopmans operator
acting on

〈
θ, UT

〉
.

The sequence
{
TNW θ

}
has many Scott limits besides its principal limit, U∞.

But NONE of the other Scott limits, such as TNW θ, are also fixed points. That
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is, the LFP is the unique Scott limit of
{
TNW θ

}
that is also a fixed point of the

Koopmans operator.
An important implication of the LFP construction within the Scott topology

framework is that the sequence yields “good approximations”to the LFP. Given
the LFP we find that the sequence of iterates is eventually in any neighborhood
(open set) containing the LFP. The monotone properties of

{
TNW θ

}
imply that

once an iterate belongs to a particular neighborhood of the LFP, then all suc-
ceeding iterates also belong to that neighborhood and improves the information
about the LFP as one step follows another.
The CRT says that U∞ = ∧NTNWUT is the GFP. This is demonstrated by

showing the antitone sequence
{
TNWU

T
}
is inf-preserving: TW

(
∧NTNWUT

)
=

∧NTNWUT . This inf-preservation property required by the TK FPT does NOT
have an analog in the Scott topology approach.8 The sequence

{
TNWU

T
}
↘ U∞

fails to satisfy the monotonic net sup-preservation property simply because it
is not isotone. Scott continuity, acting alone, yields the inequality TWU∞ ≤
lim infN

(
TNWU

T
)

= U∞. Absent a form of inf-preservation, Scott’s topological
structure does not imply U∞ is a fixed point for the Koopmans operator. Even
though we know from the CRT construction that U∞ is the GFP of TW , this
fact is not provable from Scott continuity and monotonicity of TW alone.
Now suppose that we establish U∞ as the GFP (say, invoke the TK FPT

based CRT). Then we observe that each U ∈ 〈θ, U∞〉 is also a Scott limit of
the sequence

{
TNWU

T
}
! In particular, each U ∈fix(TW ), including the LFP, is

a Scott limit of
{
TNWU

T
}
. Therefore, the sequence

{
TNWU

T
}
does not have a

unique Scott limit which is also a fixed point, unlike the LFP theory’s case. We
cannot reasonably say that the GFP is constructed as the unique Scott limit
of
{
TNWU

T
}
which is also a fixed point in the manner we can say the LFP is

constructed by successive approximations under the Scott continuity hypothesis.
The fact that the fixed point U∞ is shown to exist as a consequence of veri-

fying the Koopmans operator is Scott continuous provides us with a topological,
as well as order-theoretic, defense for considering this fixed point as the oper-
ator equation’s principal solution. These two elements, acting in combination,
have their roots in “logic and computer science,”according to Goubault-Larrecq
([17], p.58).
The Least Fixed Point Existence and Construction Theorem does not yield

either the existence of the GFP nor any statement about fix(TW ) other than
it is nonempty and U∞ is its smallest element. By contrast, the TK FPT
constructions yield the extremal fixed points and fix(TW ) is a countably chain
complete poset. The Least Fixed Point Existence and Construction Theorem’s
hypotheses are stronger than monotonicity of TW assumed in Tarski’s Theo-
rem [37]. The formal argument is also more elementary (by reduction to the
monotonic sup-preservation of sequences) in comparison to Tarski’s Theorem.9

8The inf-preservation property is the analog of saying the Koopmans operator is Scott upper
semicontinuous. However, convergence of antitone nets indexed on the natural numbers is well-
defined in this concept, but there is no topological requirement that anitone inf-preservation
obtain as a matter of Scott continuity. .

9See the comments in Gierz et al ([16], p. 160). Also see Goubault-Larrecq ([17], p. 64) in
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In particular, the constructive TK FPT and Kleene FPT proofs based on suc-
cessive approximations by iteration over the natural numbers are certainly more
elementary than the recent “constructive”versions for Tarski’s Theorem due to
Cousot and Cousot [13] and Echenique [15] obtained by iterating over the or-
dinals. In the case of the Kleene FPT we exploit the natural numbers as an
index set for defining a net that has nice limiting and approximation properties
in Scott’s topology.

5 Conclusion

Our development of the Scott continuity and fixed point machinery for the
Koopmans equation has a broader methodological perspective. The same ar-
guments favoring the LFP over the GFP can be made for those two solutions
offered in Kantorovich’s [21] original paper. Assign his operator’s domain, an
order interval in a Dedekind complete Riesz space, the Scott topology. The prin-
cipal solution as defined by Kantorovich is found by iteration from the order
intervals bottom element. It differs from his GFP in the Scott context in the
same manner discussed by us: each Scott limit of the iterative process initiated
at the top element has multiple Scott limits including the LFP. In fact, Scott
continuity does not, by itself, show the GFP actually exists as the principal
Scott limit of the successive approximation initiated at the top element. Scott
continuity of the operator must be verified in applications. Our paper, using
net convergence, demonstrates this verification is possible in at least one applied
nonlinear operator fixed point problem on a Dedekind complete Riesz space.
Economic models employing monotone operator methods are widespread in

the macrodynamics literature. Our computationally motivated methodology
offers a selection principle for numerical solutions of recursive macrodynamic
models where theory suggests multiple fixed points exist. Choose the Least
Fixed Point.

reference to the Kleene Fixed Point Theorem.
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6 Mathematical Appendix

6.1 Posets, Lattices, and the Tarski-Kantorovich Theorem

A set X is said to be partially ordered, or a poset, if it is nonempty and for
certain pairs (x, y) in X ×X there is a binary relation x ≤ y which is reflexive,
transitive, and antisymmetric.
A poset X is a lattice provided each pair of elements has a supremum

(sup, meet) and an infimum (inf, join). Standard lattice notation for sups
and infs is followed: sup {x, y} = x ∨ y and inf {x, y} = x ∧ y. A complete
lattice is a lattice in which each nonempty subset Y has a supremum

∨
Y and

an infimum
∧
Y . The element x ∈ Y is called greatest, or largest (smallest,

or least) in Y if and only if y ≤ x (x ≤ y) respectively, for all y ∈ Y . Note
that a complete lattice has a greatest element (top) and and a bottom element
(bottom). An order interval in X, denoted by 〈x, x̄〉 ⊆ X, is defined by
x ≤ x̄, x 6= x̄, and x ∈ 〈x, x̄〉 if and only if x ≤ x ≤ x̄. Clearly x is the least
element of the order interval while x̄ is the corresponding largest element.
Suppose that Y ⊆ X and letX be a poset. The set Y is called a chain (ofX)

if and only if Y is nonempty and for all x, y ∈ Y , one of the two conditions x ≤ y
or y ≤ x holds. If the chain is countable, then it is called a countable chain.
Let {xn}∞n=0 ⊂ X be a monotone sequence (either xn ≤ xn+1, or xn ≥ xn+1 for
each n). The monotone sequence {xn}∞n=0 is increasing (decreasing) when
xn ≤ xn+1 (xn ≥ xn+1) for each n. A monotone sequence is a countable chain.
The supremum and infimum of a monotone sequence are denoted in lattice
notation as follows: ∨

n

xn = sup
n
xn; and

∧
n

xn = inf
n
xn.

The subscript n in the meet and join notation is omitted when the index set
is clearly understood from the context. If, for every chain Y ⊆ X, we have
inf Y ≡

∧
Y ∈ X and supY ≡

∨
Y ∈ X, then X is said to be a chain

complete poset. If this condition obtains only for every countable chain Y ⊆
X, then X is said to be a countably chain complete poset. If Y has greatest
and smallest elements, then monotone sequences {xn} ⊆ Y are countably chain
complete posets in Y .
A function F : X → X is said to be a self-map on X. By FN (x), we

are denoting the N th−iteration of F with initial seed x. That is, FN (x) =
F
(
FN−1 (x)

)
for each natural number N and F 0 (x) ≡ x. This self-map is

said to be monotone whenever x, y ∈ X and x ≤ y, then F (x) ≤ F (y). Some
writers refer to a monotone self-map as an isotone self-map or an increasing
self-map. A point x∗ ∈ X with F (x∗) = x∗ is a fixed point of the self-map, F .
The set of all fixed points of this self-map is denoted fix (F ).
The classical Tarski Fixed Point Theorem [37] asserts that a monotone self-

map on a complete lattice has a nonempty set of fixed points. Moreover, there is
a smallest and a largest fixed point. These are the extremal fixed points. The
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set of all fixed points forms a complete lattice in the induced order (the partial
order inherited fromX). Successive approximations iterating the monotone self-
map by transfinite induction yields the largest fixed point with initial seed the
top element, and the smallest fixed point when the bottom element is the initial
seed.10 Iteration using transfinite induction is not a constructive procedure in
any sense of that term. The Tarski-Kantorovich Theorem is similar to Tarski’s
result, but combines a weaker property for the self-map’s domain with a stronger
order continuity condition imposed on the operator. That property implies the
operator is a monotone self-map.
We consider two distinct forms of order continuity. The first is defined en-

tirely in terms of the underlying order properties of our domain’s (and range’s)
function space. This approach, introduced below, implies the set of fixed points
is a countably chain complete subset of the operator’s domain. The successive
approximation procedure used in this result is constructive in so far as the itera-
tions are indexed on the natural numbers in contrast to the transfinite iterative
procedure underlying Tarski’s Theorem. The second order continuity idea is
topological and its recursive utility application is new.11 This is the notion of
continuity when the order interval of possible utility functions is endowed with
Scott’s induced topology. This topology’s definition and the development of
its properties as applied to the Koopmans operator are deferred to Section 4.
Scott’s topological structure yields a constructive foundation for the operator’s
least fixed point. We argue in Section 4 that this result reenforces the arguments
supporting the least fixed point as the operator equation’s principal solution.

Definition 9 A self-map F defined on a countably chain complete poset X
with the greatest element x̄ and smallest element x is monotonically sup-
preserving if for any increasing {xn} we have

F
(∨

xn
)

=
∨
F (xn),

and monotonically inf-preserving if for any decreasing {xn}, we have

F
(∧

xn
)

=
∧
F (xn).

F is said to be monotonically sup/inf-preserving if and only if it is both
monotonically sup-preserving and monotonically inf-preserving.

Evidently, a monotonically sup (respectively, inf)-preserving self-map on the
ordered space X must be an increasing self-map. The sup/inf preservation

10Cousot and Cousot [13] provide a so-called constructive proof without monotonic sup-inf
continuity. However, their argument employes transfinite induction. Echenique [15] simplifies
their proof while maintaining a tranfinite induction argument. Gierz ([16], p.20) sketches an
iterative least fixed point theorem that applies to a monotone self-map on complete lattice.
However, that proof also employs transfinite induction indexed by the ordinals.
11See Vassilakis [38] for economic and game theoretic applications of Scott domains and

Scott continuity (in terms of sequencs as opposed to nets).
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property is a type of order continuity introduced in Kantorovich’s [21] sem-
inal article on monotone methods with successive approximations. In the case
of a monotonically increasing sequence the sup is regarded as the sequence’s
limit and continuity is taken to mean F (sup {xn}) = sup [{F (xn)}] where the
countable chain is denoted {xn}. Likewise for the inf of a decreasing sequence.
Some authors (e.g. Granas and Dugundji [18]) refer to order continuity as used
here by the term σ —order continuity to stress the restriction to countable
chains and also drop the monotonicity requirement for the sequences. The con-
clusions of the Tarksi-Kantorovich Theorem based on iteration indexed on the
natural numbers can fail without order continuity. Davey and Priestley ([14],
p.93) offer an elementary counterexample.
The Tarski-Kantorovich Fixed Point Theorem (TK FPT) as refined

by Balbus, Reffett and Wózny ([5], Theorem 7), states the following:12

Theorem 10 Suppose that X is a countably chain complete partially ordered set
with the greatest element, x̄, and the smallest element, x. Let F be a monotone
self-map on X.

1. If F is monotonically inf-preserving; then
∧

N
FN (x̄) is the greatest

fixed point of F , denoted x∞;

2. if F is monotonically sup-preserving; then
∨

N
FN (x) is the least fixed

point of F , denoted x∞.

3. fix(F ) is a nonempty countably chain complete poset in X.

The result that fix(F ) is a countably chain complete poset in X is due to
Balbus, Reffett, and Wózny [5]. It is the analog of Tarski’s result that fix(F )
is a complete lattice in the induced order. The Tarski-Kantorovich theorem
tells us that successive approximations (iteration of F indexed on the natural
numbers) initiated at either the smallest or greatest element of the set X pro-
duces the smallest or largest fixed point in the limit, respectively. Moreover,
it is clear that x∞ ≤ x∞. If x∗ is any other fixed point for F , and x ≤ x∗,
then x ≤ F (x) ≤ F (x∗) = x∗. Iteration produces the sequence

{
FN (x)

}∞
N=1

such that for each N , FN (x) ≤ x∞ ≤ x∗ and FN (x) ↗ F (x∞) = x∞ ≤ x∗.
Hence, the fixed point x∞ is the least fixed point (LFP). Likewise, x∞ is
the greatest fixed point (GFP). The notation FN (x) ↗ F (x∞) indicates
that FN (x) approximates the LFP from below for each N . Likewise,
FN (x̄)↘ F (x∞) = x∞ says FN (x̄) approximates the GFP from above.

12Granas and Dugundji( [18], p. 26) name this result. The earliest published version is in
Kantorovich [21]. Baranga [6] presents it as the “Kleene Fixed Point Theorem.” Jachymski
et al ([19], p. 249) argue it is equivalent to the TK FPT. Also, see Stoltenberg-Hansen, et al
([36], p. 21) on Kleene’s Fixed Point Theorem. Kamihigashi et al [20] apply the Kleene Fixed
Point Theorem to dynamic programming. These authors assume the operator in question is
σ-order continuous.
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6.2 The Kleene Fixed Point Theorem

The TK FPT is order theoretic; it is not a topological fixed point theorem. The
Kleene Fixed Point Theorem (Kleene FPT) combines order and the Scott topol-
ogy for the poset X with some additional structure. The formal development
of Scott’s topology is developed in the main text (Section 4). Kleene’s FPT is
closely related to the TK FPT, but it stands formally as a distinct result. Both
Giabault-Larrecq ([17], p. 64) and Gierz, et al ([16], p. 160) treat Kleene’s
FPT via the Scott topology. The Theorem’s proof offers a surprise: the LFP is
constructed by the same successive approximation argument used to construct
the LFP in the TK FPT. However, Scott continuity is not necessarily monotonic
inf-preserving, so there is a subtle difference in the conclusions of these two fixed
point theorems for monotone mappings. See Section 4 for additional comments
on the use of the Scott topology and its use in distinguishing the LFP from the
GFP (when the latter exists). The Kleene FPT is stated below is a special case
of the result given by Giabault-Larrecq [17]. These restrictions are suffi cient for
application of his stated Kleene FPT and directly connect the Koopmans op-
erator equation and our proof that a LFP exists by successive approximations.
The Scott continuity of the self-map F on X implies that F must be a monotone
operator.

Theorem 11 Suppose that X is a chain complete partially ordered set with
the smallest element, x. Let F be a Scott continuous self-map on X. Then F
has a LFP in X, denoted x∞ = F (x∞). Moreover, the LFP may be obtained
x∞ =

∨
N
FN (x).

6.3 Positive Cones and Nonlinear Operators in Riesz Spaces

Let E denote a real vector space. The zero element in E is denoted by θ. A
nonempty subset P of E is said to be a cone if x ∈ P , then λx ∈ P for each
scalar λ ≥ 0. In particular this definition of a cone implies θ ∈ P . A cone
induces a partial order on the vectors belonging to E. A vector x is said to be
positive, written x ≥ θ, provided x ∈ P . The cone is then called the positive
cone of E and is denoted by E+ in the sequel. The standard partial relation
expressing x ≥ y whenever x, y ∈ E is defined by requiring x− y ∈ E+. Write
x > θ whenever x ≥ θ and x 6= θ. Likewise, x > y provided x ≥ y and x 6= y.

Our application requires the vector spaces are Riesz spaces where E is
equipped with the partial order derived from the cone E+. A Riesz space
is a partially ordered vector space that is also a lattice. For each element x ∈ E,
we define its positive part, x+, its negative part x−, and its absolute value,
|x|, by the formulas:

x+ = x ∨ θ, x− = x ∧ θ , and |x| = x ∨ (−x) .

An order interval in the Riesz space E is a set of the form 〈x, y〉 =
{z ∈ E : x ≤ z ≤ y}. A subset G of a Riesz space is order bounded from
above if there is a y ∈ E such that z ≤ y for each z ∈ G. The dual notion

30



that this subset is order bounded from below is defined similarly. A subset of
a Riesz space is order bounded if it is contained in an order interval. E is
order complete, or Dedekind complete, if every nonempty subset that is
order bounded from above has a supremum (and dually, every nonempty subset
that is order bounded from below has an infimum).
Suppose further that E is a real Banach space. The notation x >> θ means

x ∈ int(E+), where int (E+) denotes the norm interior of the cone E+. Of
course, this latter inequality is only meaningful when int (E+) 6= ∅ – a strong
topological restriction on the underlying Banach space. An arbitrary cone P
contained in E with nonempty interior in its norm topology is said to be a solid
cone. The positive cones turns out to be solid in our applications.
We consider an abstract nonlinear operator, denoted by A, that is positive on

E+. That is, it is a self-map: A : E+ → E+. We also write this as AE+ ⊆ E+.
The operator A is said to be monotone (isotone, increasing) on E+ if
x ≤ y, (x, y ∈ E+) implies Ax ≤ Ay. It is antitone whenever Ax ≥ Ay instead.
The Koopmans operator is shown in Section 4 to be monotone whenever the
aggregator is also monotone in its arguments.
Given a nonlinear operator satisfying AE+ ⊆ E+ we are concerned with the

existence of fixed points as well as whether or not there is a unique solution in
the cone E+. The operator equation is Ax = x with x ∈ E+; a solution is
a fixed point of the operator, A. In some applications there may be a trivial
fixed point, θ. We are only interested in nontrivial fixed points x ∈ E+ with
x 6= θ. The Koopmans operator does not admit a trivial fixed point under our
assumptions.
The present paper addresses the existence of a solution in the cone E+. We

do this by showing the operator is an order continuous self-map on a particular
order interval in that cone. Application of the TK FPT yields extremal fixed
points.
All spaces in this paper are complete normed Riesz spaces. They are also

Banach lattices. That is, they are Riesz spaces which are Banach spaces whose
norms are also lattice norms. A norm ‖•‖ on a Riesz space is a lattice norm
provided for each point x and y, |x| ≤ |y| implies ‖x‖ ≤ ‖y‖. Indeed, the spaces
on which the Koopmans operator acts turn out to be abstract M − spaces, or
AM −spaces with an order unit. AM −spaces are Banach lattices for which
‖x ∨ y‖ = max {‖x‖ , ‖y‖ for each x, y ∈ E+}. An AM − space E possesses an
order unit whenever there exists an element e ∈ E, e > θ, such that for each
x ∈ E there is a scalar λ > 0 satisfying |x| ≤ λe. If an AM − space has a unit,
then its lattice norm is defined for each x ∈ E by ‖x‖∞ = inf {λ > 0 : |x| ≤ λe}.
This norm is equivalent to the given norm on E. One advantage to this setup is
that the positive cone of an AM − space with unit is norm-closed, convex and
has a nonempty norm interior. A Banach lattice has an order unit if and only
if that order unit is an interior point of the space’s positive cone. In this case,
the original sup norm and lattice norm topologies are equivalent.
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