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Abstract. This paper provides new insights into the solution of optimal stochas-
tic control problems by means of a system of partial differential equations, which
characterize directly the optimal control. This new system is obtained by the ap-
plication of the stochastic maximum principle at every initial condition, assuming
that the optimal controls are smooth enough. The type of problems considered are
those where the diffusion coefficient is independent of the control variables, which
are supposed to be interior to the control region.

Key Words. Optimal stochastic control, Itô’s formula, Hamilton–Jacobi–Bellman
equation, semilinear parabolic equation.
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1 Introduction

Three major approaches in stochastic optimal control can be differentiated: dy-
namic programming, duality and the maximum principle.
Dynamic programming obtains, by means of the optimality principle of Bellman,
the Hamilton–Jacobi–Bellman equation, which characterizes the value function;
see Refs. 1–5. Under some smoothness and regularity assumptions on the solu-
tion, it is possible to obtain, at least implicitly, the optimal control. This is the
content of the so called verification theorems which appear in Fleming and Rishel
(Ref. 1) or Fleming and Soner (Ref. 3). However, the problem of recovering the
optimal control from the gradient of the value function by means of solving a static
optimization problem remains, and this can be difficult to do.
Duality methods, also known in stochastic control theory as the Martingale ap-
proach, have become very popular in recent years because they provide powerful
tools for the study of some classes of stochastic control problems. Martingale
methods are particularly useful for problems appearing in finance, such as the
model of Merton (Ref. 6). Duality reduces the original problem to one of finite
dimension. The approach is based on the martingale representation theorem and
the Girsanov transformation. We refer the reader to Bismut (Ref. 7), Bismut (Ref.
8) and the monograph by Duffie (Ref. 9) for an account of the theory and the
references therein.
The stochastic maximum principle has been completely developed in recent years
in Peng (Ref. 10) and Yong and Zhou (Ref. 5). It is the counterpart of the
maximum principle for deterministic problems. The distinctive feature is the use of
the concept of forward–backward stochastic differential equations, which naturally
arise governing the evolution of the state variables and the corresponding adjoint
variables. Antecedents of the maximum principle are found in Kushner (Ref. 11),
Bismut4 (Ref. 7) or Haussmann (Ref. 12). Other developments, applicable to
problems with differential equations with random coefficients can be found in Marti
(Ref. 13).
It is the aim of this paper to develop a new approach to stochastic control. The
novelty comes from the fact that we obtain a system of PDEs that a smooth Markov
control must satisfy and that also provides sufficient condition for optimality, in the
spirit of the verification theorems. Although the system is obtained using classical
methods—the maximum principle applied to every initial condition—the authors
have not found any reference in the literature to the possibility of establishing a
system of PDEs to characterize the optimal control directly. The equations of
this new system are of a different type than the HJB. In the case considered in
this paper, where the control does not affect the diffusion coefficient in the state
equation, both the HJB and the equations of the new system are semilinear. There
is an important difference, however, because the nonlinearities in the first order
derivatives in the former equation can be very general, whereas in the latter they

4The maximum principle, duality methods and the concept of forward–backward stochastic
differential equations have its roots in the work of Bismut, who gave a very complete and rigorous
theory regarding these topics.
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are always of quadratic type. This fact can be used to establish the existence and
uniqueness of smooth optimal Markov controls as shown in Josa–Fombellida and
Rincón–Zapatero (Ref. 14).
Our approach has the following limitations:

(i) we consider only problems where the diffusion coefficient is independent of
the control variables;

(ii) the optimal control is interior to the control region;

(iii) controls are Markovian and of class C1,2;

(iv) the number of control variables is greater than or equal to the number of
state variables.

It is worth noting that many control problems share these properties, specially
some important models arising in Economics.
The idea to systematically obtain a system of PDEs for the optimal control date
back to the paper by Bourdache–Siguerdidjane and Fliess (Ref. 15) for determin-
istic control problems. The method was later extended to differential games in
Rincón–Zapatero et al. (Ref. 16) and Rincón–Zapatero (Ref. 17).
The paper is organized as follows. In Section 2 we present the control problem
and the first hypotheses and notations. In Section 3 we find a system of partial
differential equations that a vector of optimal controls of class C1,2 must satisfy.
Section 4 is devoted to establishing sufficient conditions to guarantee that a vector
of admissible controls satisfying the system is an optimal control of the problem.
Hence sections 3 and 4 respectively, provide necessary and sufficient conditions for
optimality. Concluding remarks are stated in Section 5.

2 Control Problem

In this section the framework for the stochastic control problem to be considered is
presented. First we shall introduce some useful notation. The partial derivatives
are indicated by subscripts and ∂x stands for total derivation; the partial derivative
of a scalar function with respect to a vector is a column vector; given a real
vector function g : Rn −→ Rm and a vector z ∈ Rn, gz is defined as the matrix
(∂gi/∂zj)i,j; for a matrix A, A(i) denotes the ith column and Aij denotes the (i, j)
element; vectors v ∈ Rn are column vectors and vi is the ith component; finally, >

denotes transposition.
Let a time interval [0, T ] with 0 < T ≤ ∞ and let (Ω,F ,P) be a complete
probability space. Assume that on this space a d–dimensional Brownian motion
{w(t),Ft}t∈[0,T ] is defined with {Ft}t∈[0,T ] being the Brownian filtration. Let E
denote expectation under the probability measure P.
The state space is Rn and the control region is some subset U ⊆ Rm, with m ≥
n. This assumption will be explained later, in Remark 3.2. A U–valued control
process {(u(s),Fs)} defined on [t, T ] × Ω is an Fs–progressively measurable map
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(r, ω) → u(r, ω) from [t, s] × Ω into U , that is, u(t, ω) is Bs × Fs–measurable for
each s ∈ [t, T ], where Bs denotes the Borel σ–field in [t, s]. For simplicity, we will
denote u(t) to u(t, ω).
The state process ξ ∈ Rn obeys the system of controlled stochastic differential
equations of the form

dξ(s) = f(s, ξ(s), u(s)) ds+ σ(s, ξ(s)) dw(s), s ≥ t, (1)

with initial condition ξ(t) = x. ξu will sometimes be used to indicate the depen-
dence of the state variable with respect to the control u. An important feature
of the above system is that the noise coefficient, σ, is independent of the control
variable, u. Here σ = (σij) is an n× d matrix.

Definition 2.1 Admissible Control. A control {(u(t),Ft)}t∈[0,T ] is called admis-
sible if

(i) for every (t, x) the system of SDEs (1) with initial condition ξ(t) = x admits
a pathwise unique strong solution;

(ii) there exists some function φ : [0, T ] × Rn −→ U of class C1,2 such that u is
in relative feedback to φ, i.e. u(s) = φ(s, ξ(s)) for every s ∈ [0, T ].

Let U(t, x) denote the set of admissible controls corresponding to the initial con-
dition (t, x) ∈ [0, T ]× Rn.

According to the definition, we are considering Markovian controls. If φ is time
independent, the corresponding control will be called a stationary Markov control.
u and φ will sometimes be identified in the notation.
Given initial data (t, x) ∈ [0, T ]× Rn, the criterion to be maximized is

J(t, x;u) = Etx

{∫ T

t

L(s, ξ(s), u(s)) ds+ S(T, ξ(T ))

}
, (2)

where Etx denotes conditional expectation with respect to the initial condition
(t, x). In the following, the subscript will be eliminated if there is no confusion. The
functions f : [0, T ]×Rn×U −→ Rn, σ : [0, T ]×Rn −→ Rn×d, L : [0, T ]×Rn×U −→
R, S : [0, T ]×Rn −→ R, are all assumed to be of class C2 with respect to (x, u) and
of class C1 with respect to t. The assumptions established so far will be assumed
to hold throughout the paper. Given that our aim is to solve the problem for every
(t, x) ∈ [0, T ]× Rn, U will often be written instead of U(t, x).
In the specification of the problem we have supposed m ≥ n, that is, the dimension
of the control variable is greater than or equal to the dimension of the state variable.
This is a crucial assumption for the following developments. However, for the sake
of simplicity, the case m = n will be considered first and then we will show in
Remark 3.2 that the case m > n can be reduced to the equality situation.
With a view to applying the stochastic maximum principle as it is stated in Yong
and Zhou (Ref. 5), an additional assumption will be imposed.
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(A1) There exists a constant C > 0 and a modulus of continuity ω̄ : [0,∞) →
[0,∞) such that for ψ = f, σ, L, S, we have

|ψ(t, x, u)− ψ(t, x̂, û)| ≤C‖x− x̂‖+ ω̄(‖u− û‖),
|ψx(t, x, u)− ψx(t, x̂, û)| ≤C‖x− x̂‖+ ω̄(‖u− û‖),

|ψxx(t, x, u)− ψxx(t, x̂, û)| ≤ ω̄(‖x− x̂‖+ ‖u− û‖),
∀t ∈ [0, T ], x, x̂ ∈ Rn, u, û ∈ U,

|ψ(t, 0, u)| ≤C, ∀(t, u) ∈ [0, T ]× U.

Consider a control satisfying property (ii) of Definition 2.1. Then the Lipschitz and
linear growth conditions on f and σ postulated in (A1) imply that the control also
satisfies (i), that is, it is admissible; see Yong and Zhou (Ref. 5), p. 114. However,
the assumptions are quite stringent and will only be used in the derivation of the
quasilinear system as a necessary condition for optimality. Sufficiency conditions,
which will be established in Section 4, do not make use of hypothesis (A1).
The backward evolution operator associated with (1) is given by

AφW (t, x) = Wt(t, x) +W>
x (t, x)f(t, x, φ(t, x)) + (1/2) Tr{(σσ>Wxx)(t, x)},

with W : [0, T ]× Rn → Rn of class C1,2 and where

Tr{σσ>Wxx} :=
(
Tr{σσ>W 1

xx}, . . . ,Tr{σσ>W n
xx}

)>
.

The value function is defined as V (t, x) = supu∈U(t,x) J(t, x;u). An admissible
control û ∈ U is optimal if V (t, x) = J(t, x; û) for every initial condition (t, x).
The standard approach adopted in the literature to determine an optimal control
is to solve the HJB equation

Vt(s, x) + max
u∈U

{
L(s, x, u) + Vx(s, x)

>f(s, x, u) + (1/2) Tr
{
(σσ>Vxx)(s, x)

}}
= 0, (3)

V (T, x) = S(T, x), t ≤ s ≤ T, x ∈ Rn. (4)

3 Necessary Conditions

Our purpose in this section is to find a system of PDEs that an optimal control
must satisfy. Let L2

F([0, T ]; Rn) be the set of all processes X(·) with values in

Rn adapted to filtration {Ft}t≥0 such that E
∫ T

0
‖X(t)‖2 dt < ∞. As previously

stated, hypothesis (A1) allows us to apply the stochastic maximum principle, so
that, if given the initial condition (t, x), the pair (ξ, u) is optimal, with u ∈ U(t, x),

then there exist processes p ∈ L2
F([0, T ]; Rn), q ∈ (L2

F([0, T ]; Rn))
d

satisfying for
s ∈ [t, T ] the first order adjoint equations

dp(s) = −
(
Hx(s, ξ(s), φ(s, ξ(s)), p(s)) +

d∑
i=1

σ(i)
x (s, ξ(s))>q(i)(s)

)
ds+ q(s)dw(s),

(5)

p(T ) = Sx(T, ξ(T )), (6)

6



where H(t, x, u, p) = L(t, x, u)+p>f(t, x, u) is the deterministic Hamiltonian func-
tion, corresponding to the associated deterministic problem, with σ ≡ 0. A more
precise notation for the adjoint processes is p(s; t, x) and q(s; t, x) with s ∈ [t, T ],
though in the following, we will suppress the dependence with respect to the initial
condition (t, x).
Furthermore, the following maximization condition

H(s, ξ(s), φ(s, ξ(s)), p(s)) = max
u∈U

H(s, ξ(s), u, p(s)) (7)

holds for every s ∈ [t, T ], P a.s.
For the next result, which establishes a necessary condition of optimality in terms
of a new system of PDEs, we define

Γ(t, x, u) := −f−>u Lu(t, x, u), (8)

and Σ> := (σ> σ>∂xΓ (φxσ)>).

Theorem 3.1 Necessary Conditions. Let assumption (A1) on the coefficient
functions be satisfied. Let φ ∈ U be an interior optimal Markov control such
that det fu(t, x, φ) 6= 0 for all (t, x) ∈ [0, T ]× Rn. Then φ satisfies

0 = Ĥut + Ĥ>
uxf + Ĥ>

up

(
− Ĥx −

m∑
i=1

σ(i)
x

(
∂xΓσ

)(i)
)

+ ĤuuAφφ+
1

2
Tr{ΣΣ>∇2Ĥu}

(9)
and the final condition

Lui(T, x, φ(T, x)) + Sx(T, x)
>fui(T, x, φ(T, x)) = 0, i = 1, . . . , n. (10)

Proof. Since that by assumption the maximizing argument is interior to U , (7)
implies

Hui(s, ξ(s), φ(s, ξ(s)), p(s)) = 0, ∀s ∈ [t, T ], P a.s., (11)

for all i = 1, . . . , n. Assuming that fu is invertible for all (t, x, u) ∈ [0, T ]×Rn×U ,
it is possible to obtain the unique solution of the above linear system in the adjoint
variable p, Lu + f>u p = 0, as

p = −f−>u Lu. (12)

An obvious consequence of (11) is dHui(s, ξ(s), u(s), p(s)) = 0 a.s. For an admis-
sible feedback φ, Itô’s rule is applicable to u(s) = φ(s, ξ(s)), hence omitting the
arguments and in differential notation

dui = dφi = φi
tdt+ φi

xdξ + (1/2)dξ>φi
xxdξ, i = 1, . . . , n. (13)

Applying again Itô’s rule to Hui for i = 1, . . . , n, we have

0 = dHui = Huit dt+∇Hui

 dξ
dp
dφ

 +
1

2
(dξ> dp> dφ>)∇2Hui

 dξ
dp
dφ

 ,

(14)
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where∇ and∇2 denote the gradient and the Hessian matrix operators respectively,
with respect to the variables (x, p, u). Substituting (1), (5), (13) in the equality
(14) and taking into account that Huipp = 0 for all i, because the Hamiltonian
is linear in p, the following system of stochastic differential equations holds along
(s, ξ(s), u(s), p(s)) a.s.:

0 =
(
Huit +H>

uixf +H>
uip

(
−Hx −

m∑
i=1

σ(i)
x q(i)

)
+H>

uiuAφφ+
1

2
Tr{ΣΣ>∇2Ĥu}

)
ds

+
(
H>

uixσ +H>
uipq +H>

uiuφxσ
)
dw(s).

(15)
Therefore, both the drift term and the diffusion coefficient of this system of SDEs
must be identically null a.s. In order to obtain a system of PDEs for the optimal
control, we must eliminate the adjoint vector p by means of (12). Ĥ{·} will denote
H{·} once this substitution is performed. Equating the diffusion coefficient to zero

we get q = −f−>u (Ĥuxσ + Ĥuuφxσ) a.s., s ≥ t. In fact, q can be expressed as

q = (∂xΓ)σ, (16)

The possibility to write q as shown in (16) follows from the identities Huip = fui ,

Γx = −f−>u Ĥux and Γu = −f−>u Ĥuu.
The drift term in (15) also vanishes a.e., hence after substitution of (12) and (16),
the system of PDEs (9) characterizing an admissible optimal control is obtained.
Note that (9) and (16) are valid a.s. along the optimal trajectory, but at (t, ξ(t)) =
(t, x), (9) holds with certainty.
The stochastic maximum principle also provides a boundary condition at time
T for the system of PDEs, which is implicitly given by (10). This follows from
(6) and (12) evaluated at t = T ; we will suppose that it is possible to obtain
φ(T, x) := ϕ(x) for a function ϕ sufficiently regular. For this is enough to check if
the hypotheses of the Implicit Function Theorem are fulfilled. �

Some comments about the structure of the system and comparison with the HJB
equation (3) are pertinent here. The system is semilinear because the terms involv-
ing the second order derivatives of φ are independent of the solution. Furthermore,
assuming the invertibility of Ĥuu, the system is weakly coupled, that is, the second
order derivatives of φi appear only in equation i. The first order derivatives are
coupled and appear in a non–linear way derived from the quadratic–type terms

Tr{φxσ(φxσ)>Ĥuuu} and Tr{φxσ(φxσ)>Ĥupu(−f−>u Ĥuu)}.

This is a very interesting feature that has been used by the authors in Josa–
Fombellida and Rincón–Zapatero (Ref. 14) to study an economic model of deter-
mining the optimal consumption subject to stochastic returns. With respect to
the HJB equation, it is also of semilinear type, but the non linearity with respect
to φx can be much more general and not only of quadratic type. On the other
hand, it must be pointed out that the HJB equation is a single equation, whereas
we have obtained a system of n PDEs, but with a more simple structure.
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It would be possible to replace the smoothness assumption on φ for a weaker one.
Given that all that is needed is to apply Itô’s rule, Theorem 3.1 is true if the
class of Markov controls is (W 1,2

l, loc([0, T ] × Rn))n, l ≥ 2, the space of functions
such that the weak partial derivatives of order 1 with respect to time and order 2
with respect to x are in (Ll

loc([0, T ] × Rn))n; see Krylov (Ref. 2). Note that the
hypotheses imposed imply that Hu belongs to W 1,2

l, loc([0, T ]× Rn).

Remark 3.1 There is in the literature a different but closely related system of
PDEs which characterize the vector of adjoint variables under some regularity
assumptions, see equation (17) below. This system was obtained for the first time
in Bismut (Ref. 7) and later in5 Elliot (Ref. 18). It is important to note that the
system below depends also on the optimal control and for this reason it appears
with a simple structure. To obtain the system for the adjoint variables we can
proceed as follows. Let us suppose the existence of a vector function γ of class C1,2

depending of the variables (s, y) and such that p(s) = γ(s, ξ(s)), where p is the
adjoint variable of the problem with initial condition (t, x). Applying Itô’s rule to
γ(s, ξ(s)) we have

dγ =
(
γt + γxf +

1

2
Tr{σσ>γxx}

)
ds+ γxσ dw. (17)

Once the validity of the maximum principle is established, by the uniqueness of
solutions of (5) we can match the diffusion terms and drift terms in expressions
(5) and (17), to obtain q = γxσ and

−
(
Hx +

n∑
i=1

(σ(i)
x )>q(i)

)
= γt + γxf +

1

2
Tr

{
σσ>γxx

}
.

Of course, the first equality is nothing but (16). Therefore we find that the second
identity is transformed into

γt + γxf +Hx +
m∑

i=1

(σ(i)
x )>γxσ

(i) +
1

2
Tr

{
σσ>γxx

}
= 0. (18)

For the derivation of this identity, the equal dimension condition between the
state and control variables is not needed. Furthermore, the equality q = γxσ
allows situations to be handled where the diffusion parameter σ also depends on
the control variables, u. In this case the elimination of optimal control variables
is not so straightforward. As already observed, the system (18) also depends
on the unknown vector of optimal controls. Supposing it is possible to obtain a
sufficiently regular function ũ(t, x, z) such that φ̂(t, x) = ũ(t, x, γ(t, x)), that is, ũ
is the inverse function of Γ with respect to its third component for all (t, x), then
by substituting in the previous system of equations, we obtain a system of PDEs
that truly characterize the vector of adjoint variables. However, writing the system

5In Elliot (Ref. 18) a misprint is registered making the equation shown different to that
appearing in Bismut (Ref. 7) and in (18) of the present paper.
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for the optimal control does not require the inverse function ũ to be found, which
can be hard or impossible to do, even in scalar problems. Under the conditions
contemplated in this paper it is only necessary to solve the linear system (12) to
obtain γ(t, x) = Γ(t, x, φ(t, x)) and by substituting in (18), to arrive at the desired
PDE system for φ. Of course, this is simply system (9).

Remark 3.2 Case m > n. When the number of control variables is greater than
the number of state variables, m > n, the linear system in p is over–determinate.
Because the maximum principle holds, the existence of a solution to the over–
determined system is assured. This solution can be obtained as follows. Suppose
that fu has rank n for all t, x, u; then f>u fu has full rank n, hence from (11)
p = −(fuf

>
u )−1fuLu. Now the argument runs as shown above, obtaining a system

of n PDEs for m > n unknowns. These equations can be complemented with an
algebraic relationship between the controls, which is obtained from the fact that
the system Hu = 0 admits a solution in p. In this way, m−n control variables can
be formally expressed by means of n of them.
In the casem < n, elimination of p is not so straightforward. Now, the procedure to
obtain a system of PDEs for the control would be to take n−m+1 Itô differentials
in the identity Hu ≡ 0. This leads to PDE equations for the optimal control of
higher order, and of a very different nature than (9), hence this case will not be
pursued in this paper.

4 Sufficient Conditions

The main objective in this section is to show that a solution of class C1,2 of (9)–(10),
maximizing the Hamiltonian function for all (t, x) and satisfying some additional
assumptions, is an optimal Markov control for problem (1)–(2). This result is,
therefore, similar to the verification theorems in Fleming and Rishel (Ref. 1) or
Fleming and Soner (Ref. 3). The applicability of Theorem 4.1 established in this
section has been shown in an economic model studied in Josa–Fombellida and
Rincón–Zapatero (Ref. 14).
The process ξ depends on the initial condition (t, x). In the following, ξj

xi will
denote the partial derivative of ξj with respect to xi.
We consider the following assumption:

(A2) E

{∫ T

t

(
γjσ

(j)

xl + q(j)
)
ξj
xi dw(s)

}
= 0, for every i, j, l = 1, . . . , n.

The following result establishes that the adjoint process p(s) = γ(s, ξ(s)) is the
gradient with respect to x of the objective functional. This result, of independent
interest, is a previous step in the formulation of the sufficiency theorem that will
be stated later.
Recall from the previous section that Γ denotes f−>u Lu and γ(t, x) = Γ(t, x, φ̂(t, x)),

where φ̂ is an admissible Markov control solving the semilinear system. The proof
of the following result can be found in Josa–Fombellida and Rincón–Zapatero (Ref.
14).

10



Proposition 4.1 Shadow Price. Let φ̂ ∈ U be a solution of (9)–(10) such that

assumption (A2) is satisfied and fu(t, x, φ̂) is invertible for all (t, x) ∈ [0, T ]×Rn.
Then

Jx(t, x; φ̂) = Γ(t, x, φ̂(t, x)) = p(t),

Jxx(t, x; φ̂)σ(t, x) = q(t),

for every (t, x) ∈ [0, T ]× Rn.

Once we have identified the vector of adjoint variables with the gradient of the
objective functional, the system (9) can be expressed in conservative form. Since

γ is the gradient with respect to the variable x of the function J(t, x; φ̂), which
is of class C3, γi

xj = γj
xi is satisfied for every i, j = 1, . . . , n, because the crossed

second order partial derivatives of the function J coincide. By the same argument,
γi

xrxj = γr
xjxi for all i, j, r = 1, . . . , n. On the other hand, after some tedious

calculations, we find(
Tr{σσ>γx}

)
xr = Tr{σσ>γr

xx}+ 2
m∑

i=1

(σ
(i)
xr )>

( n∑
j=1

γj
xσ

ji
)

and substituting this expression in (18), we obtain

γt + ∂x

(
L+ γ>f +

1

2
Tr{σσ>γx}

)
= 0, (19)

where the fact that Hu = 0 holds at the optimal control has been used. It is
interesting to compare the structure of (19) which is expressed in conservative
form, with that of (18), which appears in non conservative form.
In terms of Γ(t, x, φ) (19) can be rewritten as

∂tΓ(t, x, φ(t, x))+∂x

(
H(t, x, φ(t, x))+

1

2
Tr

{
σ(t, x)σ(t, x)>∂xΓ(t, x, φ(t, x))

})
= 0,

(20)
with H(t, x, u) := H(t, x, u,Γ(t, x, u)).
Taking total derivatives, a system of partial differential equations of second order
arise, which is the same as (9). Expressing the system in conservative form is
useful, because it allows us in the next theorem to establish a sufficient result of
optimality. It also makes possible to obtain the value function from the control,
as will be shown in the following section.
Now we are in position to establish the following sufficient condition for optimality.

Theorem 4.1 Verification Theorem. Let φ̂ ∈ U be a solution of (9)–(10) such

that assumption (A2) is satisfied and fu(t, x, φ̂) is invertible for all (t, x) ∈ [0, T ]×
Rn. Suppose further that the following maximization property holds for all (t, x) ∈
[0, T ]× Rn, for every admissible Markov control u,

H(t, x, φ̂,Γ(t, x, φ̂)) ≥ H(t, x, u,Γ(t, x, φ̂)). (21)

Then φ̂ is an optimal Markov control for problem (1)–(2).
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Proof. Let u be any admissible Markov control and ξu the associated process with
initial condition (t, x). We will omit the dependence of ξu on the initial condition
in order to facilitate the exposition. Let u(s) be u(s, ξu(s)). Applying Itô’s rule to
J(s, ξu(s);u), s ≥ t. We have

dJ(s, ξu(s);u) = AuJ(s, ξu(s);u) ds+ Jx(s, ξ
u(s);u)>σ(s, ξu(s)) dw(s). (22)

On the other hand, as shown in Yong and Zhou (Ref. 5), we can write the objective
functional as

J(s, ξu(s);u) = E

{∫ T

s

L(r, ξu(r), u(r)) dr + S(T, ξu(T )) | F t
s

}
∀s ∈ [t, T ], P–a.s.,

(23)
where {F t

s}s≥t is the filtration of the σ–fields generated by Brownian motion in
the interval [t, s]. The process

m(s) = E

{∫ T

t

L(r, ξu(r), u(r)) dr + S(T, ξu(T )) | F t
s

}
, s ∈ [s, T ]

is a square–integrable {F t
s}s∈[t,T ]–martingale, hence by the martingale representa-

tion theorem, we have

m(s) = m(t) +

∫ s

t

M(r) dw(r),

with M ∈ (L2
F(t, T ; Rn))d. Let us observe that m(t) = J(t, x;u), therefore

m(s) = J(t, x;u) +

∫ s

t

M(r) dw(r). (24)

By (23) and (24)

J(s, ξu(s);u) = m(s)− E

{∫ s

t

L(r, ξu(r), u(r)) dr

}
= J(t, x;u)− E

{∫ s

t

L(r, ξu(r), u(r)) dr

}
+

∫ s

t

M(r) dw(r).

It then follows

dJ(s, ξu(s);u) = −E{L(s, ξu(s), u(s))} ds+M(s) dw(s). (25)

We get from (22) and (25)

E
{
Js(s, ξ

u(s);u) + L(s, ξu(s), u(s)) + J>y (s, ξu(s);u)f(s, ξu(s), u(s))

+
1

2
Tr{(σσ>)(s, ξu(s))Jyy(s, ξ

u(s);u)}
}

= 0,

12



This equality holds for all admissible u ∈ U , for all s ∈ [t, T ]. In particular, it

holds for φ̂, hence

0 = E
{
Js(s, ξ

u(s); φ̂) +H(s, ξu(s), φ̂, Jy(s, ξ
u(s); φ̂))

+
1

2
Tr{(σσ>)(s, ξu(s))Jyy(s, ξ

u(s); φ̂)}
}

≥ E
{
Js(s, ξ

u(s); φ̂) +H(s, ξu(s), u, Jy(s, ξ
u(s); φ̂))

+
1

2
Tr{(σσ>)(s, ξu(s))Jyy(t, ξ

u(s); φ̂)}
}
,

because Jy ≡ Γ, an identity which is proven in Proposition 4.1, and because of (21).
Expanding the Hamiltonian function we find that the latter inequality is equiv-
alent to E

{
L(s, ξu(s), u(s))) + AuJ(s, ξu(s); û)

}
≤ 0. Integrating and exchanging

expectation and integration we have

E

{∫ T

t

(L(s, ξu(s), u(s)) +AuJ(s, ξu(s); φ̂)) ds

}
≤ 0. (26)

Given that by the assumptions made∫ T

t

Jx(s, ξ
u(s); φ̂)>σ(s, ξu(s)) dw(s)

is a martingale, the application of Dynkin’s formula to (25) leads to

E{S(T, ξu(T ))} − J(t, x; φ̂) = E

{∫ T

t

AuJ(s, ξu(s); φ̂) ds

}
. (27)

Substituting (27) into (26) we obtain

E

{∫ T

t

L(s, ξu(s), u(s)) ds

}
≤ J(t, x; φ̂)− E{S(T, ξu(T ))}, (28)

that is, J(t, x;u) ≤ J(t, x; φ̂). �

Remark 4.1 Condition (21) automatically holds when φ̂ is interior to the control
set U and the Hamiltonian function is concave with respect to u, for every t, x, p.
To see this, note that Hu(t, x, φ̂,Γ(t, x, φ̂)) = 0 is trivially fulfilled by the definition

of Γ, hence φ̂ is a critical point of the concave function u 7→ H(·, ·, u, ·), so φ̂ is a
global maximum of H. On the other hand, it is worth noting that the full strength
of (21) is not really needed in the proof. It only suffices that for every initial
condition (t, x) and for every admissible Markov control u the following holds

E
{
H(s, ξu(s),Γ(s, ξu(s), φ̂), φ̂)

}
≥ E

{
H(s, ξu(s),Γ(s, ξu(s), φ̂), u)

}
, (29)

where ξu is the state variable process associated to u.
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Remark 4.2 Infinite Horizon. Proposition 4.1 can be extended to the infinite–
horizon case, T = ∞, when the following transversality condition holds

lim
T→∞

E
{
γ>(T, ξ(T )) ξx(T )

}
= 0. (30)

By Proposition 4.1 (30) is the same as limT→∞ E
{
∂xV (T, ξ(T ))

}
= 0 for every

initial condition (t, x), that is, the long run behavior of the expected value function
along the optimal trajectory is independent of the initial condition x, for every x.
With respect to Theorem 4.1, two assumptions about the limit of J(t, x; φ̂) as
t → ∞ must be added to the hypotheses, in order to assure the optimality of
φ̂. One of them is (30) which assures the equality between pi and Jxi(t, x; φ̂),
for i = 1, . . . , n. The other one is obtained by substituting E{S(T, ξu(T ))} by

J(T, ξu(T ); φ̂) in (28), given that, in the infinite horizon problem, there is no
residual function S. Taking limits when T tends to infinite in expression (28), if
the conditions

lim sup
T→∞

J(T, ξu(T ); φ̂) = lim sup
T→∞

V (T, ξu(T )) ≥ 0 (31)

and

lim
T→∞

E

{∫ T

t

L(s, ξu(s), u(s)) ds

}
= E

{∫ ∞

t

L(s, ξu(s), u(s)) ds

}
<∞

hold for all admissible control u, then J(t, x;u) ≤ J(t, x; φ̂). The latter equality
simply means that the cost functional of the infinite–horizon problem makes sense
for the class of admissible controls.

Remark 4.3 In the deterministic case, σ ≡ 0, the system of partial differential
equations (9) is of course of first order, and quasilinear. The system for this case
was first derived in Bourdache–Siguerdidjane and Fliess (Ref. 17). Clearly, the
results remain valid now for C1 solutions and (A2) is not needed. In Rincón–
Zapatero et al. (Ref. 18) and Rincón–Zapatero (Ref. 19) an extension to differen-
tial games is provided.

5 Conclusions

This paper provides an alternative method for the analysis of stochastic optimal
control problems to the classical ones based on dynamic programming, duality,
and the maximum principle. The novelty of the approach we propose in this
paper does not consists in the tools we use in the construction of the theoreti-
cal framework—which heavily depend on dynamic programming concepts and the
maximum principle—but in the optimality conditions, necessary and sufficient,
that are obtained. These are entirely new. We do not pretend to convey the reader
the idea that our approach is superior to the existing ones—we have remarked the
limitations of the method in the Introduction—but to provide a different perspec-
tive, based in a system of PDEs which directly characterize the optimal controls,

14



without resorting to the value function. A useful feature of the system of PDEs
introduced in the paper is that the gradient of the optimal control enters in a
quadratic way. In contradistinction, the gradient of the value function in the HJB
equation enters in a non–linear way.
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