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Abstract. In this paper we provide some sufficient conditions for the differentiability of the

value function in a class of infinite-horizon continuous-time models of convex optimization aris-

ing in economics. We dispense with the assumption of interior optimal paths. This assumption

is quite unnatural in constrained optimization, and is usually hard to check in applications.

The differentiability of the value function is used to prove Bellman’s equation as well as the

existence and continuity of the optimal feedback policy. We also establish uniqueness of the

vector of dual variables. These results become useful for the characterization and computation

of optimal solutions.

Keywords. Constrained optimization, value function, differentiability, envelope theorem, du-

ality theory.

1 Introduction

In this paper we study the differentiability of the value function for a class of concave infinite–

horizon continuous–time problems of wide application in economics. We extend the envelope

theorem of Benveniste and Scheinkman [9] to optimization problems with constraints. We

dispense with an interiority condition for the state and control variables that is usually quite

restrictive in economic applications. This interiority condition may rule out periods of zero con-

sumption, irreversibility of investment, bounded capacity, binding monetary constraints, and

various financial market restrictions such as short-sale constraints and collateral requirements.

∗This paper was written while Manuel Santos was visiting Universidad Carlos III de Madrid. We acknowledge

financial support from projects SEJ2005–05831, ECO2008–04073 and ECO2008–02358 of the Spanish Ministry

of Science and Innovation, and a Cátedra de Excelencia of Banco Santander.
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Indeed, in his well-known introduction of control theory to economic growth, Arrow [4] formu-

lated an economic problem with inequality constraints to account for feasibility, irreversibility,

market clearing, and non-negative restrictions. There are usually no primitive assumptions that

may prevent these constraints from being saturated, and hence one cannot generally invoke the

envelope theorem of Benveniste and Scheinkman [9].

The differentiability of the value function is essential for the characterization and computa-

tion of optimal solutions. Indeed, in continuous time models the differentiability of the value

function allows for a simple proof of Bellman’s equation and the maximum principle. Hence,

from the differentiability of the value function we obtain that the feedback control or policy

is a continuous function. For finite–horizon problems, it is known [cf. Goebel [16]] that if the

value function is differentiable then the path of dual variables or supporting prices is unique.

We shall extend this uniqueness result for the infinite–horizon case.

Several papers deal with existence of dual variables that belong to the superdifferential of

the value function [e.g., Araujo and Scheinkman [3], Aubin and Clarke [7], and Benveniste and

Scheinkman [10]]. Our focus here is on the uniqueness of these dual variables. Benveniste and

Scheinkman [9] seems to be the first paper to substantiate the differentiability of the value func-

tion for infinite–horizon continuous–time optimization. As in static models, the value function

can be characterized as the envelope of short–run, concave and smooth functions. This argu-

ment relies on concavity of the objective and interiority of optimal solutions – see Assumption

(IN) below. The envelope construction breaks down for boundary solutions. Indeed, in this

latter case the derivative of the value function is computed as an infinite integral of derivatives

over the optimal path whereas for interior solutions the derivative only depends on the marginal

value at time zero. Therefore, for boundary solutions the differentiability of the value function

cannot longer be addressed by methods of the kind found in purely static problems. For finite–

horizon optimization, Goebel [16] proves that the value function is differentiable after assuming

that the terminal, bequest function is differentiable. Of course, this proof cannot be extended to

infinite-horizon problems: The dynamic programming method (see Lemma 3.1 below) implies

that for every future terminal time the bequest function corresponds to the true value function.

Hence, we still need to establish that this latter function is differentiable.

Viscosity solutions for the Hamilton–Jacobi–Bellman equation are usually quite helpful to

study regularity properties of the value function. This elegant method can readily be extended

to constrained optimization problems, but it imposes strict concavity of the Hamiltonian func-

tion with respect to the dual variables; this is a rather strong restriction for constrained opti-

mization [cf. Bardi and Capuzzo–Dolcetta [8], Proposition 5.7 and specially Remark 5.8].

Let us also mention some other contributions in the economics literature for discrete–time

optimization that seem to be of interest for potential extensions of our work to non-convexities

[e.g., Amir et al. [2], Amir [1], Askri and Le Van [5], and Cotter and Park [12]]. All these papers

relax concavity of the optimization problem, but still demand interiority of optimal solutions.

Amir et al. [2] and Amir [1] postulate some monotonicity and supermodularity conditions on

2



the primitive functions. Askri and Le Van [5] extend the general theory of Clarke’s gradients to

the value function of a non-classical growth model, whereas Cotter and Park [12] consider one-

dimensional optimization problems and develop a version of Danskin’s theorem as introduced

by Milgrom and Segal [17].

The starting point of our analysis is our earlier paper [18] on the differentiability of the

value function in discrete–time optimization. The continuous–time formulation, however, is

technically more involved and requires to make use of infinite–dimensional calculus. In both

cases, we face the problem of the asymptotic behavior of an infinite sequence of derivatives.

In our earlier paper [18], we mapped our optimization problem into a competitive economy

that precludes existence of asset pricing bubbles [e.g., [25]]. Here, we offer a more direct

proof based on primitive assumptions. In spite of all technicalities associated with infinite-

dimensional optimization, the continuous–time formulation offers more structure because the

dynamical system that generates optimal trajectories is a flow: An optimal orbit is conformed

by a continuous arc rather than by a countable number of points. This continuity property will

be manifested in various stronger results. Theorem 3.2 below shows that differentiability of the

value function at the initial point x0 implies differentiability of the function along the whole

optimal trajectory, whereas this result is not guaranteed in the discrete–time formulation. Also,

in the scalar case the value function is always differentiable at non–stationary points for the

continuous–time case, but this is not generally true for discrete–time optimization.

In Section 2 we lay out the continuous-time optimization problem. Section 3 contains our

main results on the differentiability of the value function. In Section 4 we apply these results

to derive Bellman’s equation and the uniqueness of the dual variables. Some examples follow

in Section 5. A more technical review of our findings will be offered in Section 6. Various

mathematical definitions can be found in the Appendix, as well as additional proofs.

2 The dynamic optimization problem

We consider an infinite–horizon optimization problem. We shall approximate this problem by

a sequence of finite–horizon objectives. For finite horizons – rather than for the original opti-

mization problem – we shall make use of a Banach space framework which will be analytically

convenient for differentiability. The proof of differentiability of the value function will follow

from a limit argument over finite horizons.

2.1 Mathematical setting

Let t ≥ 0 be the initial date of the optimization problem. Let It = [t, T ], with T =∞ or T <∞.

Let β(s, t) = exp
(
−
∫ s
t δ(r) dr

)
be a discount factor over the time interval [t, s], 0 ≤ t ≤ s.

Function δ ≥ 0 is bounded with
∫∞
t δ(r) dr =∞. Hence, β(∞, t) = 0 for all t, and β(t, t) = 1.

Assume that for each r ∈ It, there exists a constant ρ > 0 such that
∫∞
r β(s, t) ds ≤ ρβ(r, t) for
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all r > t. If δ is a constant discount rate, then ρ = (1/δ) as
∫∞
r e−δ(s−t) ds = (1/δ)e−δ(r−t).

Let µt be a measure on It with density dµt(s) = β(s, t) ds. Then, µt(It) <∞ for all t. Let

L1
n(It;µt) be the set of equivalence classes of Lebesgue–measurable functions xt in Rn such that∫
It
|xt(s)| dµt(s) < ∞, where |xt(s)| is a given norm for xt(s). It follows that L1

n(It;µt) is a

Banach space with norm

‖xt‖1,µt =

∫
It

|xt(s)|β(s, t) ds.

Let µ>t be a measure on It with density dµ>t (s) = β(s, t)−1 ds = ds/β(s, t). The space

L∞n (It;µ
>
t ) consists of measurable functions pt on It such that |pt(s)|β(s, t)−1 is bounded, except

possibly on a set of measure zero. It is also a Banach space with the norm

‖pt‖∞,µ>t = ess sup
s∈It

|pt(s)|β(s, t)−1 = inf
y(s)=pt(s)

Lebesgue–a.e.

sup
s∈It
|y(s)|β(s, t)−1.

These two spaces conform a dual pair under the bilinear form

〈xt, pt〉 =

∫
It

xt(s)pt(s) ds, xt ∈ L1
n(It;µt), pt ∈ L∞n (It;µ

>
t ).

In what follows, ẋt(s) is the time derivative of function xt at time s. Let W 1,1(It) be the

set of functions xt ∈ L1
n(It;µt) such that ẋt exists µt a.e. and belong to L1

n(It;µt) and let

W 1,1
loc ([t,∞)) be the set of functions xt that belong to W 1,1(It) for every T <∞.

2.2 Continuous–time optimization

The continuous–time optimization problem can now be posed as follows. Given an initial state

x0 and the initial date t ≥ 0, find a path x∗t ∈W 1,1
loc ([t,∞)) solving the optimization program

V (t, x0) = sup

∫ ∞
t

`(xt(s), ẋt(s))β(s, t) ds

subject to (xt(s), ẋt(s)) ∈ Ω for all s ∈ [t,∞) and xt(t) = x0.

(1)

(A1) X ⊆ Rn and Ω ⊆ R2n are convex sets with nonempty interior. For each x ∈ X the set

Ωx = {u : (x, u) ∈ Ω} is non-empty.

(A2) Function ` : Ω −→ R is concave and differentiable of class C1 in a neighborhood of Ω.

In some economic models, like those studied in this paper, function `may have an unbounded

gradient at some portions of the boundary of Ω. This is not a problem if the optimal solution

never hits those boundary points, as it happens in the models we consider. Consequently, for

the economic examples below we can include the following weak reformulation of assumption

(A2) which can readily be integrated into our main results. This is a standard assumption in

economic theory [Santos [24]].
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(A2’) (i) ` : Ω −→ R is a concave and continuous mapping, and differentiable of class C1

on the interior of Ω; (ii) Let X ⊆ Ω be the set of boundary points in which the derivative of `

is not well defined. Assume that (x∗t , ẋ
∗
t ) is an optimal solution path. Then measure

(
{s ∈ It :

(x∗t (s), ẋ
∗
t (s)) ∩ X 6= ∅}

)
= 0.

For instance, in our first example in Section 5 below, consumption and capital will never be

equal to zero if the marginal utility of consumption becomes unbounded at zero consumption.

(A3) Pick any x0 ∈ intX and t ≥ 0. Then, there exists an optimal solution x∗t to Problem

(1) over the set W 1,1
loc ([t,∞)) with x∗t (t) = x0.

Existence of an optimal solution is guaranteed under various standard assumptions [cf.

Dmitruk and Kuź kina [13] and the Appendix below]. We then have that the value function

V (t, ·) in (1) is well defined on intX. By Bellman’s optimality principle, our strategy of proof

is to consider the integral functional above over finite intervals It = [t, T ].

2.3 Some regularity conditions for differentiability of the value function

The following conditions will allow us to dispense with the interiority assumption of Benveniste

and Scheinkman [9]. First, if xt reaches the boundary of X then the value function V may

not be differentiable. By backward induction, this lack of differentiability may extend over the

optimal path. We therefore assume

(IS) An optimal path x∗t (s) ∈ intX for every s ∈ It.

Rincón–Zapatero and Santos [18] provide some examples of non–differentiability when (IS)

fails. As shown below for continuous–time one–dimensional optimization this mild interiority

requirement is generally not needed.

(LI) Ω can be defined by a finite set of inequalities

Ω =: {(x, u) : gi(x, u) ≥ 0 for i = 1, . . . ,m},

where functions gi are C1 in a neighborhood of Ω. Let gσ = {gi : gi(x, u) = 0}. Then, matrix

D2gσ(x∗t (s), ẋ
∗
t (s)) has full rank over the optimal path {x∗t (s), ẋ∗t (s)} for almost all s ≥ t.

The notation is as follows: D1g and D2g are the Jacobian matrices of g = (g1, . . . , gm)

with respect to x and u = ẋ, respectively. As is well-known, linear independence (LI) implies

that matrix (D2gσ)> has a generalized right-inverse D2g
+
σ , and guarantees uniqueness of the

Kuhn–Tucker multipliers in static differentiable programs. It is important to note that (LI)

entails that at least one control variable appears in every saturated constraint; for if not, one

of the rows of matrix D2gσ is made up of zeros, violating the rank condition.
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Let the n × n–matrix G(σ;x, u) = −(D1g
>
σD2g

+
σ )(x, u), with the convention that if no

constraint is saturated at time s, then G is the null matrix. To shorten the notation we will

write

G∗t (s) = Gt(σ;x∗t (s), ẋ
∗
t (s)) = −(D1g

>
σD2g

+
σ )(x∗t (s), ẋ

∗
t (s)).

Assumption (LI) guarantees that matrix G∗t is locally integrable.

In view of assumption (IS), the smoothness of functions gi is only necessary in a neighbor-

hood of
⋃
x∈intX({x} × Ωx) rather than over the whole set Ω.

Under our strategy of proof, for boundary solutions we will need to rule out some explosive

behavior of the derivatives of the value function. These derivatives will grow according to the

linear homogeneous system of differential equations ż(s) = z(s)G∗t (s), see Theorem 3.2 below.

Hence, we shall consider the associated fundamental matrix Φt(s) with Φt(t) = In, where In

is the identity matrix. That is, Φt(s) is the unique matrix satisfying Φ̇t(s) = Φt(s)G
∗
t (s) for

every s ≥ t (a.e.). Moreover, the inverse Φ−1
t (s) exists and Φ̇−1

t (s) = −G∗t (s)Φ−1
t (s) (a.e.). As

shown later, the existence of an optimal path {(x∗t (s), ẋ∗t(s))} imposes certain restrictions on

the discounted value of Φt(s). We consider below some regularity properties under which this

discounted value goes to zero as s goes to ∞.

For the sake of comparison, we include the interiority assumption postulated by Benveniste

and Scheinkman [9]. Let B denote the unit ball of Rn.

(IN) There exist an open and convex set U ⊂ X, an ε > 0, and a time h > 0, such that

{(x∗t (s), ẋ∗t(s))}+ εB ⊂ Ω for all x0 ∈ U and almost all s ∈ [t, t+ h].

In other words, over some initial phase there exists an ε-neighborhood of the optimal path

{(x∗t (s), ẋ∗t(s))} that belongs to Ω.

3 Results

3.1 Mathematical preliminaries

We start with the following property for concave optimization problems [cf. Aubin [6], Propo-

sition 4.3]. Here, E and F are Banach spaces, and ∂v(x) is the superdifferential of a concave

function v.

Proposition 3.1 Let f be a proper concave function from E × F to R ∪ {−∞}. Consider

function v : E −→ R ∪ {−∞} defined by

v(x) = sup
u∈F

f(x, u).

Assume that u ∈ F satisfies v(x) = f(x, u). Then, the following conditions are equivalent:

q ∈ ∂v(x)
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(q, 0) ∈ ∂f(x, u).

Remark 3.1 Observe that in our model the value function v is a concave mapping on X ⊆
Rn, and so the superdifferential is well defined at every x ∈ intX. Then, ∂v(x) 6= ∅ en-

tails that ∂f(x, u) 6= ∅ at every optimal u. Therefore, existence of an interior optimal path

{(x∗t (s), ẋ∗t(s))} implies that the superdifferential of functional Jt,T defined in Lemma 3.2 below

is non–empty. This is specially important in infinite–dimensional optimization problems, where

the superdifferential of a concave functional may not be well defined. Second, (q, 0) ∈ ∂f(x, u)

if and only if u ∈ arg max f(x, u). Therefore, q ∈ ∂v(x) is independent of the maximizer chosen

as f is a concave function.

We now transform a problem with constraints into one of unrestricted maximization by

incorporating the indicator function of the feasible set Ω into the integrand of problem (1). Let

L (x, u) = `(x, u)− IΩ(x, u),

where IΩ(x, u) = 0 if (x, u) ∈ Ω and +∞ otherwise.

Assumptions (A1)–(A3) imply that L is a proper, upper semicontinuous and concave func-

tion. Then, problem (1) can now be stated as

V (t, x0) = max

∫ ∞
t

L (xt(s), ẋt(s))β(s, t) ds

subject to x(t) = x0.

Let us rewrite the model in recursive form. This formulation is made possible by the

semigroup property of the discount factor β(T, s)β(s, t) = β(T, t) for every t ≤ s ≤ T , and the

intertemporal separability of the objective and constraints.

Lemma 3.1 (Bellman’s Principle of Optimality) For every t ≤ T < ∞, the value func-

tion can be written as

V (t, x0) = max

{∫ T

t
L (xt(s), ẋt(s))β(s, t) ds+ β(T, t)V (T, x(T ))

}
. (2)

Moreover, the optimal solution of this finite-horizon problem is given by the optimal pair

{(x∗t (s), ẋ∗t (s))} to problem (1) over [t, T ].

Our first step is to compute the superdifferential of the integrand in (2) for T <∞. Then,

we provide a characterization of the superdifferential of the value function. Let Jt : It ×[
L1
n(It;µt)

]2 −→ R ∪ {−∞} be given by

Jt,T (xt, ut) =


∫ T

t
L (xt(s), ut(s))β(s, t) ds if L (xt(s), ut(s)) ∈ L1

n(It;µt),

−∞ otherwise.

(3)
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Lemma 3.2 Function Jt,T is proper, upper semicontinuous, and concave. Moreover,

∂Jt,T (xt, ut) =
{

(pt, qt) ∈
[
L∞n (It;µ

>
t )
]2

: −(pt(s), qt(s)) ∈ β(s, t)∂L (xt(s), ut(s)) a.e.
}
.

Proof. By (A1)–(A3) it is clear that function Jt,T is proper, upper semicontinuous, and

concave. The superdifferential of function Jt,T follows from the characterization of the subd-

ifferential of functionals defined by means of integrals provided in [19, 22] and the established

duality pairing; see the Appendix for further details. �

The next lemma provides a characterization of the superdifferential ∂V (t, ·) of function

x 7→ V (t, x).

Lemma 3.3 Let x0 ∈ intX. Then, q0 ∈ ∂V (t, x0) if and only if there exists (pt, qt) ∈ L∞n (It;µ
>
t )×

L∞n (It;µ
>
t ) and ξt,T ∈ ∂V (T, x∗t (T )) such that

q0 = −
∫ T

t
pt(s) ds+ β(T, t)ξt,T

qt(s) = −
∫ T

s
pt(r) dr + β(T, t)ξt,T

−(pt(s), qt(s)) ∈ β(s, t)∂L (x∗t (s), ẋ
∗
t (s)) a.e. t ≤ s ≤ T .

An immediate consequence of this lemma is the envelope theorem of Benveniste and Scheinkman

[9], where for the above indicator function we have IΩ(x, u) = 0 over an ε–tube of the optimal

path.

Theorem 3.1 (Benveniste and Scheinkman [9]) Let (A1)–(A3) be satisfied. Assume that

(IN) holds for some optimal solution {(x∗t (s), ẋ∗t (s))}. Then, the value function is differentiable

at x0 and the derivative

DV (t, x0) = −D2`(x0, ẋ
∗
t (t)).

Proof. By condition (IN) we get ∂L ((x∗t (s), ẋ
∗
t (s)) = ∂`(x∗t (s), ẋ

∗
t (s)) for s ∈ [t, t+ h]. Then,

by Lemma 3.3 the path qt(s) is absolutely continuous with qt(s) = −D2`(x
∗
t (s), ẋ

∗
t (s)) a.e.,

s ∈ [t, t+ h]. Hence,

q0 = qt(t) = lim
s→t+

1

s− t

∫ s

t
−D2`(x

∗
t (r), ẋ

∗
t (r))β(r, t) dr

is unique. It follows from Proposition 3.1 that ∂V (t, x0) is singled–valued. Consequently, V (t, ·)
is differentiable at x0. Moreover, (A2) implies that qt(t) = −D2`(x

∗
t (t), ẋ

∗
t (t)). �

3.2 Differentiability of the value function in constrained optimization

As in Assumption (LI), let G∗t (s) = Gt(σ(s);x∗t (s), ẋ
∗
t (s)) = −(D1g

>
σD2g

+
σ )(x∗t (s), ẋ

∗
t (s)). Note

that Assumptions (A1)–(A3), (IS) and (LI) will be in force for all our main results in this

section. We begin with the following characterization of the superdifferential of value function

V .

8



Proposition 3.2 Let x0 ∈ intX, and T < ∞. Then, q0 ∈ ∂V (t, x0) if and only if there exist

qt ∈ L∞n (It;µ
>
t ), −(pt(s), qt(s)) ∈ β(s, t)∂`(x∗t (s), ẋ

∗
t (s)) a.e., and ξt,T ∈ ∂V (T, x∗t (T )) such that

qt is the unique absolutely continuous solution in L∞n (It;µ
>
t ) of the linear differential system

q̇t(s) = pt(s) +G∗t (s)(qt(s)− qt(s)), (4)

with initial condition

q0 = qt(t) = −
∫
It

pt(s) +G∗t (s)(qt(s)− qt(s)) ds+ β(T, t)ξt,T .

Proof. Observe that

∂L (x, u) = ∂`(x, u)− ∂IΩ(x, u) = ∂`(x, u)−NΩ(x, u), (5)

where NΩ is the normal cone of the convex set Ω [Rockafellar [20]]. By concavity, the normal

cone to Ω at (x, u) is given by

−NΩ(x, u) =

 ∑
i∈σ(x,u)

λi(D1g
i(x, u), D2g

i(x, u)) + (z, 0) : λi ≥ 0, z ∈ NX(x)

 ,

where i = 1, 2, . . . , σ refers to those constraints which are saturated at (x, u), and NX(x) is the

normal cone to X at x ∈ X. Note that NX(x∗t (s)) = {0} because x∗t (s) is an interior point of

X as asserted in Assumption (IS) above.1

By Lemma 3.3, we have that q0 ∈ ∂V (t, x0) if and only if there exists (pt, qt) ∈ [L∞n (It;µ
>
t )]2

such that

q0 = −
∫
It

pt(s) ds+ β(T, t)ξt,T (6)

qt(s) = −
∫
Is

pt(r) dr + β(T, t)ξt,T (7)

−(pt(s), qt(s)) ∈ β(s, t)∂L (x∗t (s), ẋ
∗
t (s)) a.e. (8)

By (5) and (8), we can write pt = pt + p̂t and qt = qt + q̂t, where −(pt, qt) ∈ β(s, t)∂`(x∗t , ẋ
∗
t )

a.e., and −(p̂t, q̂t) ∈ β(s, t)NΩ(x∗t , ẋ
∗
t ) (a.e.). Thus, combining these equalities with the charac-

terization of the normal cone NΩ(x∗t , ẋ
∗
t ), we obtain

p̂t(s) = β(s, t)
∑
i∈σ(s)

λit(s)D1g
i(x∗t (s), ẋ

∗
t (s)),

q̂t(s) = β(s, t)
∑
i∈σ(s)

λit(s)D2g
i(x∗t (s)), ẋ

∗
t (s))

1This makes clear the need for (IS). If x is not an interior point of X, then there could be infinitely many

vectors in the normal cone NX(x). Uniqueness of qt will ultimately lead to differentiability of the value function

V as shown in Theorem 3.2 below.
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a.e., for some λit(s) ≥ 0, i = 1, . . . , σ. By (LI), we can then substitute out

λt(s) = β(s, t)−1D2g
+
σ (x∗t (s), ẋ

∗
t (s)) q̂t(s),

so that

p̂t(s) = −G∗t (s)q̂t(s) = G∗t (s)(qt(s)− qt(s)).

Plugging p̂t(s) into (7) we obtain

qt(s) = −
∫
Is

(
pt(r) +G∗t (r)(qt(r)− qt(r))

)
dr + β(T, t)ξt,T . (9)

Observe that q̇t(s) exists a.e., and

q̇t(s) = pt(s) +G∗t (s)(qt(r)− qt(r))

Obviously, qt is absolutely continuous. �

Remark 3.2 From Proposition 3.2 we observe that there is a diffeomorphism between the

superdifferentials ∂V (t, x0) and ∂V (T, x∗t (T )). That is, there exists only one function, qt(s, ·),
joining q0 with β(T, t)ξt,T . This is because ` is smooth and the saturated constraints satisfy (LI).

The flow mapping linking points q0 ∈ ∂V (t, x0) with points ξt,T ∈ ∂V (T, x∗t (T )) is illustrated

in Figure 1.

FIGURE 1

We are now ready to present our basic result on differentiability of the value function V

under an additional asymptotic condition to be explained below. Let ∆t(T ) denote the diameter

of compact set ∂V (T, x∗t (T )), and ‖A‖ some given norm for matrix A.

Theorem 3.2 Let x0 ∈ intX. Assume that

lim sup
T→∞

β(T, t)‖Φt(T )‖∆t(T ) = 0. (10)

Then, V (t, ·) is differentiable at x0, and V (s, ·) is also differentiable along the optimal trajectory

{x∗t } from x0, for every s ≥ t. Furthermore, if

lim
T→∞

β(T, t)Φt(T )ξt(T ) = 0 (11)

for all ξt(T ) ∈ ∂V (T, x∗(T )), then the derivative DV (t, x0) is given by the expression

DV (t, x0) =

∫ ∞
t

Φt(s)
(
D1`(x

∗
t (s), ẋ

∗
t (s)) +G∗t (s)D2`(x

∗
t (s), ẋ

∗
t (s))

)
β(s, t) ds. (12)

10



Proof. Let qt(s, q0) be a solution of (4) with initial condition qt(t) = q0 ∈ ∂V (t, x0). Then,

qt(s, q0) is unique by Proposition 3.2 and Remark 3.2. As is well known from the theory of

linear ODEs,

qt(s, q0) = Φ−1
t (s)q0 + Φ−1

t (s)

∫ s

t
Φt(r)(pt(r) +G∗(r)qt(r)) dr, (13)

where Φt is the associated fundamental matrix defined at the end of Section 2. Letting s = T

we can write q0 as

q0 = Φt(T )qt(T, q0)−
∫ T

t
Φt(r)(pt(r) +G∗(r)qt(r)) dr.

It follows from Proposition 3.2 that β(T, t)−1qt(T, q0) = ξt,T ∈ ∂V (T, x∗t (T )). A similar repre-

sentation is obtained for some other q′0 ∈ ∂V (t, x0) and ξ′t,T ∈ ∂V (T, x∗t (T )). Hence,

|q0 − q′0| ≤ ‖Φt(T )‖|qt(T, q0)− qt(T, q′0)|
= β(T, t)‖Φt(T )‖|ξt,T − ξ′t,T |
≤ β(T, t)‖Φt(T )‖∆t(T )→ 0, as T →∞,

where convergence of this last term comes from (10). Therefore, q0 = q′0, and ∂V (t, x0) is a

singleton, which implies that V (t, ·) is differentiable at x0. To show that V (s, ·) is differentiable

at x∗t (s), s > t, note that every element in ∂V (s, x∗t (s)) is the image of some qt(s; q0)β−1(s, t).

Then, ⋃
q0∈∂V (t,x0)

{qt(s, q0)} = β(s, t)∂V (s, x∗t (s)) (14)

for every s ≥ t. By uniqueness of solutions to linear ODEs, qt(s, q0) is unique since ∂V (t, x0) is

a singleton. Therefore, V (s, ·) is differentiable at x∗t (s).

The expression for the derivative (12) obtains from (13). More specifically, letting s = T ,

qt(T ) = β(T, t)ξt,T , and using (11), we get

q0 = DV (t, x0) = −
∫ ∞
t

Φt(s)
(
pt(s) +G∗(s)qt(s)

)
ds,

as T →∞. Now, recall that pt(s) = −β(s, t)D1`(x
∗
t (s), ẋ

∗
t (s)) and qt(s) = −β(s, t)D2`(x

∗
t (s), ẋ

∗
t (s)).

�

3.3 Condition (10)

This asymptotic condition only involves optimal solutions. We are now going to consider several

regularity assumptions which guarantee that condition (10) is actually satisfied. We will also

show that a slightly weaker version of (10) must be satisfied along an optimal path. Further-

more, condition (10) is not needed for one-dimensional optimization, and it holds vacuously for

stationary solutions, and for solutions that eventually lie in the interior.

11



Our next two propositions apply to all admissible solutions. Hence, the maximal rank

condition for matrixG(x, u) in Assumption (LI) should be understood to apply for every (x, u) ∈
bd(Ω).

Proposition 3.3 Assume that ` is a globally Lipschitz function on Ω. Assume that (LI) holds

at every (x, u) ∈ bd Ω. Let the following two conditions be satisfied for every admissible solution

{(xt(s), ẋt(s))}:

1. limT→∞ β(T, t)V (T, xt(T )) = 0;

2. There exists an integrable function γ such that ‖G(xt(s), ẋt(s))‖ ≤ γ(s) for s ≥ t, and∫ ∞
t

e
∫ s
t (γ(r)−δ(r)) dr ds < +∞,

∫ ∞
t

γ(s)e
∫ s
t (γ(r)−δ(r)) dr ds < +∞.

Then, condition (10) must hold true.

Condition 1 of this proposition is a familiar transversality condition which holds for a

bounded solution V of the stationary Hamilton–Jacobi–Bellman equation. It also holds in more

general environments, e.g., see Lemma 7.4 in the Appendix. Condition 2 is closely connected

with existence of an optimal solution in the infinite–horizon control problem. Consider for in-

stance the following growth model (for a detailed exposition of the general model, see Section 5

below). Let X = R+, `(x, u) = x− u, Ω = {(x, u) x ∈ X, 0 ≤ u ≤ x}, and a constant discount

rate δ(s) = δ ≤ 1 = |G(x, u)|. Let x0 ≥ 1, t = 0 and x(s) = x0e
αs, where 0 < α < δ ≤ 1 is

constant. Pick a solution 0 < ẋ(s) = αx(s) < x(s). Hence, the pair (x0e
αs, αx0e

αs) ∈ Ω for

every s ≥ 0, and the objective attains the following value

x0(1− α)

∫ ∞
0

e−δseαs ds = x0
1− α
δ − α.

This value gets arbitrarily large as α→ δ. Therefore, the problem has no solution for any δ < 1.

Proof. We first prove that function V (t, ·) is globally Lipschitz continuous on X. For

x0 ∈ X, let xt(s, x0) be an admissible trajectory satisfying xt(t, x0) = x0. Let x1, x2 ∈ X

and T ≥ t. Let x∗t (s, x1) be an optimal trajectory from x1, and let xt(s, x2) refer to an

admissible trajectory from x2. Then, by Lemma 7.2 in the Appendix we can pick xt(s, x2)

so that |ẋ∗t (s, x1)) − ẋt(s, x2)| ≤ γ(s)|x∗t (s, x1)) − xt(s, x2)|. Also, by the asserted Lipschitz

condition on ` there exists a constant K such that

V (t, x1)− V (t, x2) ≤
∫ T

t
(`(x∗t (s, x1), ẋ∗t (s, x1))− `(xt(s, x2), ẋt(s, x2))β(s, t) ds

+ β(T, t)(V (T, x∗t (T, x1))− V (T, xt(T, x2)))

≤ K
∫ T

t
(|x∗t (s, x1))− xt(s, x2)|+ |ẋ∗t (s, x1))− ẋt(s, x2)|)β(s, t) ds

+ β(T, t)(V (T, x∗t (T, x1))− V (T, xt(T, x2))).

12



Moreover, by Lemma 7.3 in the Appendix we get

|x∗t (s, x1)− xt(s, x2)| ≤ ke
∫ s
t γ(r) dr,

for some constant k. Now, combining these inequalities it follows that

V (t, x1)− V (t, x2) ≤ K
(∫ T

t
(1 + kγ(s))e

∫ s
t (γ(r)−δ(r)) dr ds

)
|x1 − x2|

+ β(T, t)(V (T, x∗t (T, x1))− V (T, xt(T, x2))).

Exchanging the roles of x1 and x2, and letting T →∞, by condition 1 we obtain

|V (t, x1)− V (t, x2)| ≤ K
(∫ ∞

t
(1 + kγ(s))e

∫ s
t (γ(r)−δ(r)) dr ds

)
|x1 − x2|.

Hence, V (T, ·) is a globally Lipschitz function, and so the diameter ∆t(T ) of the superdifferential

is always bounded. Finally, observe that ‖Φt(s)‖ ≤ e
∫ s
t γ(r) dr as

‖Φ̇t(s)‖ = ‖G∗t (s)‖‖Φt(s)‖ ≤ γ(s)‖Φt(s)‖ ⇒ ‖Φt(s)‖ ≤ e
∫ s
t γ(r) dr.

Therefore, by condition 2 we then have that our asymptotic condition (10) holds true. �

We can also establish a similar result without demanding Lipschitzianity of `. In contrast to

the previous approach, we incorporate some uniformity conditions and a standard monotonicity

condition. Again, let B be the unit ball in Rn.

(NB) (i) The state space is X = Rn+. For x0 ∈ intX the optimal trajectory {x∗t (s)} from x0

belongs to a set X ′ such that X ′+ εB ⊆ Rn+ at a distance ≥ ε for some ε > 0; (ii) For all s ≥ t
let ∂V (s, ·) ≥ 0; let D1`(x

∗
t (s), ẋ

∗
t (s)) + G∗t (s)D2`(x

∗
t (s), ẋ

∗
t (s)) ≥ 0 over the optimal solution

{(x∗t (s), ẋ∗t (s))}.

Observe that the interiority requirement of Assumption (NB)(i) is a strengthening of As-

sumption (IS) since the orbit {x∗t (s)} must be uniformly separated from the boundary of Rn+.

Proposition 3.4 Assume that the discount rate is a constant δ > 0 so that β(s, t) = e−δ(s−t)

for all s > 0. Let (NB)(i) be satisfied. Assume that there are constants a, b ≥ 0 such that

|V (x)| ≤ a|x|+ b, ∀x ∈ X. (15)

Finally, let the following condition be satisfied: There exists an integrable function γ such that

for every admissible arc (xt, ẋt) ∈ bdX ′ × Γ(X ′), where X ′ + εB ⊆ Rn+, we have

‖G(xt(s), ẋt(s))‖ ≤ γ(s) ∀s ≥ t (16)

with ∫ ∞
t

e
∫ s
t (γ(r)−δ) dr < +∞. (17)

Then, condition (10) must hold true.

13



Proof. Under the asserted conditions, it follows from Corollary 7.1 in the Appendix that the

time-homogeneous value function V is globally Lipschitz on X ′, and so the diameter ∆t(T ) of

the superdifferential is always bounded on X ′. Also, as in the proof above we have ‖Φt(s)‖ ≤
e
∫ s
t γ(r) dr. Moreover, since the optimal trajectory {x∗t (s)} belongs to X ′, by (16)–(17) it follows

that condition (10) holds true. �

As discussed in the Appendix, condition (15) can be obtained under very general assump-

tions. Finally, we can also show that a slightly weaker version of (10) is necessary for optimality.

Proposition 3.5 Let Assumption (NB)(ii) hold. Then

lim sup
T→∞

‖β(T, t)Φt(T )ξt(T )‖ <∞.

Proof. Observe that (NB)(ii) implies that every vector of dual variables qT ∈ ∂V (T, xt(T, x0))

is non-negative. Then, by Proposition 3.2 for any ξt(T ) ∈ ∂V (T, xt(T, x0)) there is some

q0 ∈ ∂V (t, x0) such that

q0 ≥ β(T, t)Φt(T )ξt(T ) ≥ 0.

�

3.4 Differentiability for the scalar case

In the one-dimensional case with a constant discount factor we have that differentiability is

attained without Assumption (IS) and condition (10). In higher dimensions our argument

below does not work, since an absolutely continuous curve has zero Lebesgue measure.

Corollary 3.1 Let n = 1 and suppose that the discount rate δ is constant. Consider that

x0 ∈ intX is such that the optimal path x(s) from x0 satisfies ẋ∗t (s) 6= 0 on some interval

t ≤ s ≤ T . Then, V is differentiable at x0.

Proof. We argue by contradiction. First, note that the value function V is time–homogeneous,

since the discount rate δ is constant. If V is not differentiable at x0, then by Proposition 3.2

we get that V is not differentiable at x(s) for any s ≥ t either. Hence, V is not differentiable in

a set of positive Lebesgue measure, by assumption. This is in contradiction with the concavity

of V , since a real concave function has at most countably many points of non–differentiability.

�

Actually, since the optimal trajectory x∗t is absolutely continuous, it must be that the set

{x(s) : t ≤ s ≤ T} is a singleton if and only if ẋ∗t is zero over the interval [t, T ]. Therefore,

in the one-dimensional case with a constant discount rate, the value function is differentiable

at all interior points of the state space, with the possible exception of stationary points. We

study now the differentiability of the value function at stationary points for a general state

space X ⊂ Rn.
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3.5 Differentiability at stationary points

By an optimal stationary point we mean a constant optimal solution x∗ = x∗t (s) for almost all

s, so that ẋ∗t (s) = 0 for all s.

Corollary 3.2 Assume that the discount rate δ is constant. Let x∗ ∈ intX be an optimal

stationary point. Suppose that all coordinates of vector D1`(x
∗, 0) + G(x∗, 0)D2`(x

∗, 0) are

positive. Then, V is differentiable at x∗.

Proof. Using equation (13) in Theorem 3.2 and the identity q(T ) = β(T, 0)ξt,T we know

that q0 ∈ ∂V (x0) if and only if for every T there exists ξT ∈ ∂V (x∗(T )) such that

q0 =

∫ T

0
(D1`(x

∗(s), ẋ∗(s)) +G∗(s)D2`(x
∗(s), ẋ∗(s)))β(s, 0)Φ(s) ds+ β(T, 0)Φ(T )ξT .

As x∗ is a stationary point this equality reads

q0 =

∫ T

0
(D1`(x

∗, 0) +G(x∗, 0)D2`(x
∗, 0))e(G(x∗,0)−δIn)s ds+ e(G(x∗,0)−δIn)T ξT . (18)

Note that now the fundamental matrix is Φ(s) = eG(x∗,0)s; moreover, both q0, ξT belong to

∂V (x∗) for any T , and by assumption, each component of vector D1`(x
∗, 0)+G(x∗, 0)D2`(x

∗, 0)

is strictly positive. Hence, e(G(x∗,0)−δIn)T tends to the null matrix as T → ∞. Therefore, V is

differentiable at x∗ because q0 is univocally defined as

q0 =

(∫ ∞
0

e(G(x∗,0)−δIn)s ds

)
(D1`(x

∗, 0) +G(x∗, 0)D2`(x
∗, 0)).

�

Therefore, under strict monotonicity [cf. (NB)(ii)] this method of proof shows that condition

(10) is vacuously satisfied for stationary solutions.

3.6 Some counterexamples

3.6.1 Necessity of Assumption (IS)

We will show the necessity of (IS) in a simple specification of the optimal growth model that

will be studied in detail in Section 5. Consider X = [0,∞), a linear utility U(c) = c, a constant

discount rate δ > 0, and a linear production function f(k) = αk for some α > 0 and k in [0, 1].

For k ≥ 1, suppose that f is increasingly monotone, smooth, concave, and limk→∞ f
′(k) = 0.

According to Dmitruk and Kuź kina ([13], Th. 1), the problem admits a solution for any

discount rate δ > 0; moreover, every trajectory is bounded.

For 0 < k0 < 1, consider the family of admissible trajectories k̇(s) = αk(s) for 0 ≤ s ≤ T ,

and k̇(s) = 0 for s ≥ T . Pick T = − 1
α ln k0; that is, k(T ) = k0e

αT = 1. By Lemma 3.1,

V (k0) = sup
0≤k̇t≤f(kt)

{∫ T

0
(f(k(s))− k̇(s))e−δs ds+ e−δTV (k(T ))

}
≥ e−δTV (k(T )) = e−δTV (1) = V (1)k

δ/α
0 .

15



The value function is continuous on X, with V (k) > 0 for any k > 0 and V (0) = 0. Hence, the

above inequality determines that ∂V (0) = ∅ if α > δ.

3.6.2 Necessity of Assumption (LI)

Even in the scalar case, Assumption (LI) cannot be weakened. Consider the following problem

V (x0) = −max

∫ ∞
0
−x(t)e−δt dt, δ > 0,

subject to the constraints: ẋ ≥ −2x and ẋ ≥ −1
2x. This set of feasible choices Ω is depicted

in Figure 2. At point x0 = 0 both constraints are saturated, thus (LI) does not hold since the

problem is one–dimensional. In the region where x > 0 the smallest admissible derivative is

ẋ = −1
2x. Hence, for x0 > 0 the optimal path is x(t) = x0e

−t/2. It follows that x(t) > 0 for

every t, since the stationary point x0 = 0 is never reached in finite time. In the region where

x < 0 we also need to pick the smallest admissible derivative because it is now positive. More

precisely, ẋ = −2x. Hence, for x0 < 0 the optimal path is x(t) = x0e
−2t < 0 for every t, which

again converges to x = 0. Clearly, x0 = 0 is an optimal stationary point.

Therefore, the value function

V (x0) =


x0

2 + δ
, if x0 < 0;

x0
1
2 + δ

, if x0 ≥ 0.

This function is not differentiable at x0 = 0.

FIGURE 2

4 Duality theory and Bellman’s equation

We first show uniqueness of dual arcs satisfying a transversality condition. This uniqueness

result easily follows from the differentiability of the value function and some properties of partial

superdifferentials of saddle functions discussed in the Appendix. We also derive Bellman’s

equation and show the continuity of the optimal feedback control or policy function. Of course,

if the policy function is continuous then the optimal solution x∗t (s) is a C1 function of s.

Let us begin with the Hamiltonian associated with the optimization problem

H(x, q) = sup
u
{L (x, u) + qu}. (19)
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Combining Lemma 3.3 with Proposition 7.2 in the Appendix, an optimal solution u = x∗t must

satisfy the Hamiltonian inclusions

−q̇t(s) ∈ β(s, t)∂xH(x∗t (s), qt(s)),

ẋ∗t (s) ∈ β(s, t)∂qH(x∗t (s), qt(s)),
(20)

for almost all s ∈ [t, T ]. Here, ∂xH denotes the superdifferential of the concave function x 7→
H(x, q) for a fixed q, and ∂qH denotes the subdifferential of the convex function q 7→ H(x, q)

for a fixed2 x. If a pair (x∗t , qt) satisfies the Hamiltonian inclusions at all times, then we say

that qt is the dual variable. It has the interpretation of a shadow price.

Theorem 4.1 Let the pair (x∗t , qt) satisfy the Hamiltonian inclusions (20) with x∗t (t) = x0.

Assume that the following transversality condition holds3

lim
T→∞

qt(T )x∗t (T ) = 0. (21)

Then, the path of dual variables qt(s) is unique.

Bellman’s equation is a fundamental tool in solving dynamic programming problems. As

is well known, Bellman’s equation requires some smoothness of the value function; moreover,

the optimal policy correspondence is obtained as the arg max of this equation. Therefore,

the differentiability of the value function is helpful for the existence and numerical solution of

Bellman’s equation. Let us rewrite (19) as

H(x, q) = sup
u∈Ωx

{`(x, u) + qu}.

Assuming a constant discount rate: δ(s) = δ for every s, we get Bellman’s equation as

−δV (x) +H(x,DV (x)) = 0 for all x ∈ intX.

That is,

−δV (x) +H(x,DV (x)) = −δV (x) + sup
u∈Ωx

{`(x, u) +DV (x)u} = 0 for all x ∈ intX.

Let us define the optimal policy correspondence u ∈ h(x) = ∂qH(x,DV (x)). This is the set of

admissible values of u ∈ Ωx that solves maxu∈Ωx{`(x, u) + qu}.

Proposition 4.1 Assume that the multivalued mapping x ⇒ Ωx is continuous and that Ωx is

a compact set for every x ∈ X. Assume that ` is strictly concave with respect to u. Then,

the optimal ẋ∗t is given by a continuous function ẋ∗t = h(xt) for all xt ∈ intX, where h(x) =

∂qH(x,DV (x)).

2For the concavity of the function x 7→ H(x, q) and the convexity of the function q 7→ H(x, q), see Rockafellar

[20, Chapter VII].
3As is well known [cf., [10]] Assumption (NB)(ii) implies (21) along an optimal solution.
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Proof. Since V is differentiable on intX, function (x, u) 7→ `(x, u) + DV (x)u is continuous.

Hence, by Berge’s Theorem, h is upper hemicontinuous. Moreover, by the strict concavity of `

in u, the maximizer h(x) is unique, and thus h is a continuous function. Finally, the expression

h(x) = ∂qH(x,DV (x)) follows from the first-order condition. �

5 Examples

5.1 The one–sector growth model with irreversible investment

Consider the following version of the neoclassical growth model:

max
ct(s),it(s)

∫ ∞
t

U(ct(s))β(s, t) ds subject to

k̇t(s) = it(s)− γkt(s),
ct(s) + it(s) = f(kt(s)),

kt(s) ≥ 0, ct(s) ≥ 0, it(s) ≥ 0, kt(t) = k0.

The notation is as follows: kt(s) is capital at time s, ct(s) is consumption, and it(s) is investment.

The utility function, U : R+ −→ R, is increasing, concave, differentiable over [0,∞) with

U ′(0+) < +∞ or U ′(0+) = +∞. The production function, f : R+ −→ R+, is bounded,

increasing, concave, and differentiable in [0,∞) with f ′(0+) = +∞.

As is well understood, the problem can be mapped into variables (kt, k̇t) corresponding to

our original framework:

max
kt(s),k̇t(s)

∫ ∞
t

U(f(kt(s))− γkt(s)− k̇t(s))β(s, t) ds subject to

− γkt(s) ≤ k̇t(s) ≤ f(kt(s))− γkt(s), kt(s) ≥ 0.

Then, the instantaneous utility function is `(k, u) = U(f(k)− γk − u) with derivatives

D1`(x, u) = U ′(c)(f ′(k)− γ), D2`(k, u) = −U ′(c).

The constraints are g1(k, u) = u+ γk, g2(k, u) = f(x)− γk − u. The feasible set is depicted in

Figure 3.

FIGURE 3

It follows that

G({1}; k, u) = −D1g
1(k, u)D2g

1(k, u) = −γ,
G({2}; k, u) = −D1g

2(k, u)D2g
2(k, u) = f ′(k)− γ.
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Note that both constraints cannot be binding at the same time. Therefore,

G∗t (s) =

{
−γ, if σ = {1};
f ′(k∗t (s))− γ, if σ = {2},

and Φt(s) = e
∫ s
t G
∗
t (r) dr.

We are now ready to check that all our regularity conditions are generally satisfied. First,

let us show that assumption (IS) holds. If the optimal solution is at the boundary with σ = {1},
then it decreases at a constant rate so that k∗t (s) = k0e

−γ(s−t) > 0 for every s ≥ t, and never

hits 0. If the optimal solution is at the boundary with σ = {2}, then k̇∗t is positive around k = 0.

Moreover, an optimal solution with σ = {2} for every s ≥ t cannot be possible, since it implies

zero consumption for the optimal solution at all times. Hence, (10) is vacuously satisfied. For

σ = {1}, we should note that e
∫ T
t (−δ+G∗t (s)) ds = e(T−t)(−δ−γ) → 0 as T → ∞. Again, (10) is

vacuously satisfied in the case of σ = {1} because the restriction f ′(0+) = +∞ implies that the

optimal capital stock k∗t (s) will never be arbitrarily close to zero. Actually, this model satisfies

all the conditions postulated in (NB) above. Finally, as seen above (LI) holds trivially since an

optimal solution cannot be at both extremes of the boundary at the same time.

We have then proved the following

Proposition 5.1 In the one–sector growth model with irreversible investment the value func-

tion is differentiable at interior points. Moreover, the derivative is

DV (t, k0) =

∫ ∞
t

e
∫ s
t (G∗t (r)−δ(r)) drU ′(c∗t (s))(f

′(k∗t (s))− γ −G∗t (s)) ds,

where G∗t = 0 if the optimal arc lies in the interior of correspondence Ω.

Note that the envelope theorem of Benveniste and Scheinkman [9] cannot be invoked for

cases in which some constraint could be binding. The irreversibility assumption may bind if

capital is high enough, and zero consumption may be obtained if capital is low enough. Clearly,

for a constant discount rate δ > 0, differentiability of the value function follows from our above

results for the scalar case.

5.2 A monetary economy

Consider the following cash-in-advance model

max
(ct(s),mt(s),kt(s),k̇t(s))

∫ ∞
t

U(ct(s))β(s, t) ds subject to

k̇t(s) + ṁt(s) = f(kt(s))− γkt(s)− ct(s) + xt(s)− πt(s)mt(s),

mt(s) ≥ ct(s) + k̇t(s) + γkt(s),

kt(s) ≥ 0, ct(s) ≥ 0.
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Here, ct is consumption, mt is a stock of real monetary holdings, kt is capital, xt is the value

of government transfers rebated to the consumer as a consequence of the inflation tax, and πt

is the rate of inflation. Both U and f satisfy the same properties as in the previous example.

For simplicity, the cash–in–advance constraint mt ≥ ct + k̇t(s) + γkt(s) applies to purchases of

both the consumption good and gross investment.

Let us rewrite this problem in terms of the state variables (k,m). Then, the instantaneous

objective is rewritten as:

`((k,m), (k̇, ṁ)) = U(f(k)− γk + x− πm− k̇ − ṁ),

and the constraints:

g1((k,m), (k̇, ṁ)) = f(k)− γk + x− πm− k̇ − ṁ ≥ 0, (non-negative consumption);

g2((k,m), (k̇, ṁ)) = γk + k̇ ≥ 0, (irreversible investment);

g3((k,m), (k̇, ṁ)) = m+ ṁ− f(k)− x+ πm ≥ 0, (cash–in–advance).

We are therefore confronted with a two–dimensional problem. As in the growth model, the

pure state constraint k ≥ 0 is not binding, as f ′(0+) =∞. Thus, optimal trajectories (k∗t ,m
∗
t )

lie in the interior of the state space X = R2
+, and (IS) is satisfied. In order to check (LI) we

consider Jacobian matrices D2(g1, g2), D2(g1, g3), D2(g2, g3) and D2(g1, g2, g3) and verify the

full–rank assumption. Of course, if only one constraint is saturated, then (LI) follows trivially.

All matrices

D2(g1, g2) =

(
−1 −1

1 0

)
, D2(g1, g3) =

(
−1 −1

0 1

)
, D2(g2, g3) =

(
1 0

0 1

)
,

have maximal rank. The three constraints (g1, g2, g3) can only be binding for zero money

holdings, m = 0. This case has been ruled out. Therefore, (LI) is always satisfied.

In order to check asymptotic condition (10), from our arguments in the previous example

we know that there are periods in which constraints g1 (zero consumption) and g2 (irreversible

investment) will not be saturated. Hence, let us focus on the simple case in which only g3 (cash-

in-advance) is binding for all s ≥ t. Then, Gt({3}; ((m), (ṁ))) = −D1(g3)>D2(g3)+ = −(1+π).

Therefore, Φt(T )e−δT = e
∫ T
t (G∗t (r)−δ) dr = e

∫ T
t (−1−π−δ) dr. Of course, this expression goes to

zero, and hence (10) will always hold whenever the set of optimal solutions (k,m) remains in a

compact set separated from the boundary of R2
+.

Observe that our asymptotic condition (10) should not be confused with transversality con-

dition (21). The transversality condition is about asymptotic values (i.e., price times quantity),

whereas (10) is about asymptotic shadow prices for constraints that are always binding. For

instance, in the literature of the optimum quantity of money, it is well known that there are

no steady states for π > −δ. For our asymptotic condition (10) the requirement is simply

π > −1 − δ. Further, (10) is vacuously satisfied for time intervals in which none of the con-

straints is saturated.
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6 Concluding remarks

This paper contains several results on the differentiability of the value function for a class of

infinite–horizon continuous–time optimization problems with saturated constraints. One main

goal of our exercise is to dispense with the interiority condition of Benveniste and Scheinkman

[9]. We additionally show that the path of dual variables is unique, and derive a version of

Bellman’s equation for constrained optimization so that the feedback control or policy function

is a continuous mapping. Therefore, the differentiability of the value function is essential for

the characterization and computation of optimal solutions.

As illustrated in our examples above, there are many economic models with saturated con-

straints that violate the interiority condition of Benveniste and Scheinkman [9]. To circumvent

this interiority condition, we postulate three additional assumptions which seem indispensable.

First, the path of state variables must lie in the interior of the domain; for if not, the superdiffer-

ential of the value function may be multi-valued or may be undefined. Second, as in the static

case we require a linear independence assumption on the saturated constraints. And third,

we rule out explosive behavior of the derivatives of the value function. The existence of an

optimal path already imposes some restrictions on the dynamics, since the derivatives cannot

grow faster than the discount factor. Moreover, we provide some mild regularity conditions on

the optimization problem that imply our asymptotic condition.

The analysis presents several differences with respect to the discrete–time case considered

in our previous paper [18]. In discrete–time, Bellman’s equation is guaranteed under general

assumptions. (For instance, this equation holds for bounded, non–continuous objective func-

tions.) In continuous–time, we need certain smoothness conditions to write down Bellman’s

equation. Furthermore, iterations must proceed over time intervals rather than over simple

dates as every time t has measure zero. Hence, the continuous–time problem requires the use

of infinite–dimensional calculus. We transform a problem with constraints into one of uncon-

strained optimization, and build the analysis over finite–horizon optimization problems in a

Banach–space setting. We characterize the superdifferential of the value function at time t = 0

as a sum of the superdifferenatial of the value function at every time T > 0 and an integral of

derivatives of the return function and constrains over the interval [0, T ]. Then, our asymptotic

condition implies that the discounted value of the superdifferential of the value function at time

T converges to zero as T goes to infinity.

As already remarked, the continuous-time formulation offers more structure than the discrete-

time counterpart, since an optimal trajectory is conformed by a continuous arc rather than by a

sequence of countable points. This continuity property is actually manifested in stronger results

and sharper examples. For instance, for one–dimensional optimization the value function is dif-

ferentiable under general conditions in the continuous–time case. Also, as illustrated in several

examples above the assumptions are usually easier to check in applications: For continuous arcs

it is simpler to track down points of switching binding constraints.
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7 Appendix

For a given Banach space E and its dual E>, let 〈 ·, · 〉 be the associated bilinear form over

E × E>. That is, for fixed x ∈ E mapping 〈x, ·〉 defines a continuous linear functional on E>

and for fixed p ∈ E> mapping 〈·, p〉 defines a continuous linear functional on E.

For a bounded linear mapping A : E −→ F between Banach spaces E and F , with dual

spaces E> and F>, respectively, the adjoint is the unique linear mapping A> : F> −→ E>

satisfying

〈x,A>p〉 = 〈Ax, p〉, ∀x ∈ E, ∀p ∈ F>.

Let us now recall some basic definitions from convex analysis. Assume that f : F −→
R ∪ {∞} is an upper semicontinuous, concave function. Then, the effective domain of f is

dom f = {x ∈ F : f(x) <∞}. Function f is called proper if dom f 6= ∅. The set

∂f(x) = {p ∈ F> : 〈x− x′, p〉 ≤ f(x)− f(x′) ∀x′ ∈ F}

is the superdifferential of function f at x. An element p ∈ ∂f(x) is called a supergradient of f

at x. Let dom ∂f = {x ∈ F : ∂f(x) 6= ∅}. The superdifferential of f is always well defined at

interior points of dom f , that is, int dom f ⊆ dom ∂f .

Let A : E −→ F be a continuous linear operator. Assume that there is x ∈ E such that

A(x) ∈ int dom f . Then, the following equality holds, see [14], Prop. 5.7:

∂(f ◦A)(x) = (A> ◦ ∂f)(A(x)). (22)

Let us then introduce the families of linear mappings At : Rn ×L1
n(It;µt) −→

[
L1
n(It;µt)

]2
:

At(x0, ut) = (xt, ut), where xt(s) = x0 +

∫ s

t
ut(r) dr (23)

and Bt : Rn × L1
n(It;µt) −→ Rn:

Bt(x0, ut) = x0 +

∫ T

t
ut(r) dr. (24)

Proposition 7.1 1. Operator At is linear and continuous. Its adjoint

A>t :
[
L∞n (It;µ

>
t )
]2
−→ Rn × L∞n (It;µ

>
t )

is defined as

A>t (pt, qt) =
(∫

It

pt(s) ds,

∫
Is

pt(r) dr + qt

)
.

2. Operator Bt is linear and continuous. Its adjoint

B>t : Rn −→ Rn × L∞n (It;µ
>
t )

is defined as

B>t (y0) = (y0, y0).
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Proof. 1. Obviously, At is linear. Let us show that it is well defined and continuous. We have∫
It

|xt(s)|β(s, t) ds ≤ |x0|µt(It) +

∫
It

β(s, t)

∫ s

t
|ut(r)| dr.

By an application of Fubini’s theorem to the second term in the right-hand side we get∫
It

β(s, t)

∫ s

t
|ut(r)| drds =

∫
It

|ut(r)|
∫
Ir

β(s, t) ds dr

≤ ρ
∫
It

|ut(r)|β(r, t) dr <∞,

since u ∈ L1
n(It;µt), and by assumption

∫∞
r β(s, t) ds ≤ ρβ(r, t). It is easy to prove from these

inequalities that the mapping is continuous.

To find the adjoint A>t , consider (x0, u) ∈ Rn×L1
n(It;µt) and (pt, qt) ∈ [L∞n (It;µ

>
t )]2. Then,

using the duality pairings

〈At(x0, u), (pt, qt)〉 = 〈x0 +

∫ s

t
u(r) dr, pt〉+ 〈u, qt〉

= x0

∫
It

pt(s) ds+

∫
It

(∫ s

t
u(r) dr

)
pt(s) ds+ 〈u, qt〉.

Changing the order of integration in the second summand and applying Fubini’s Theorem, we

find

〈At(x0, u), (pt, qt)〉 = x0

∫
It

pt(s) ds+

∫ T

t
u(s)

∫
Is

pt(r) dr ds+ 〈u, qt〉

= 〈x0,

∫
It

pt(s) ds〉+ 〈u,
∫
Is

pt(r) dr〉+ 〈u, qt〉

= 〈(x0, u), A>t (pt, qt)〉.

The result for A>t is thus established.

2. Linearity and continuity of Bt is proved similarly. Moreover, by related computations we

get

〈Bt(x0, u), y0〉 = 〈x0, y0〉+ 〈
∫ T

t
u(s) ds, y0〉 = 〈(x0, u), B>t (y0)〉.

Hence, B>t (y0) = (y0, y0). �

Now, for T > t let Jt,T : Rn × L1
n(It;µt) −→ R ∪ {−∞} be defined as in (3). That is,

Jt,T (x0, u) = Jt,T (At(x0, u)) + β(T, t)V (T,Bt(x0, u)).

It follows from Lemma 3.1 that the value function

V (t, x0) = sup
u∈L1

n(It;µt)

Jt,T (x0, u). (25)
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By assumptions (A1)–(A3), mapping V (t, ·) is well defined and concave over intX at each t,

and ∂V (T, x∗t (T )) is not empty for every T .

The following lemma characterizes the superdifferential of Jt,T . In the sequel, pt(Is) will

denote
∫ T
s pt(r) dr.

Lemma 7.1 Assume that Jt is well-defined in a neighborhood of a feasible solution At(x0, u)

with xt(s) ∈ intX for all s ≥ t, and V is well defined in a neighborhood of xt(T ). Then,

∂Jt,T (x0, u) =
{(
− pt(It)+β(s, t)ξt,T ,−pt(Is)− qt + β(s, t)ξt,T

)
:

− (pt(s), qt(s)) ∈ β(s, t)∂(L ◦At)(x0, u), ξt,T ∈ ∂V (T, x(T )) a.e.
}
.

Proof. By the concavity of these functions, we must have

∂Jt,T = ∂(Jt,T ◦At) + β(T, t)∂(V (T, ·) ◦Bt).

Also, by (22)

∂(Jt,T ◦At) = A>t ◦ ∂Jt,T ◦At
and

∂(V (T, ·) ◦Bt) = B>t ◦ ∂V (T, ·) ◦Bt.

Combining Lemmas 3.2 and 7.1, an element of A>t (∂Jt,T (At(x0, u))) must be of the form

(−pt(It),−pt(Is) − qt), with −(pt(s), qt(s)) ∈ β(s, t)∂L
(
At(x0, u)

)
, as well as a typical ele-

ment of the set β(T, t)B>t (∂V (T,Bt(x0, u))) must be of the form β(T, t)(ξt,T , ξt,T ) with ξt,T ∈
∂V (T, x(T )). �

Proof of Lemma 3.3.

Note that at the optimal solution At(x0, ẋ
∗
t ) all the conditions of Lemma 7.1 are satisfied. By

Proposition 3.1 we then have q0 ∈ ∂V (t, x0) if and only if (q0, 0) ∈ ∂Jt,T (x0, ẋ
∗
t ). Now, the proof

follows as a straightforward consequence of the above characterizations of the subdifferential of

Jt,T at (x0, ẋ
∗
t ).

More precisely, by Lemma 7.1 we must have

qt(s) = −
∫ T

s
pt(r) dr + β(T, s)ξt,T

with

−(pt(r), qt(r)) ∈ β(r, t)∂L (x∗t (r), ẋ
∗
t (r)) a.e. t ≤ r ≤ T .

�

The following result is used in the proof of Proposition 3.3. It states that Γ(x) = Ωx enjoys

a kind of Lipschitz property.
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Lemma 7.2 For all x, x′ ∈ X and u ∈ Γ(x), there exists u′ ∈ Γ(x′) such that

|u− u′| ≤ ‖G(x′, u′)‖|x− x′|.

Proof. Consider function η(x′) = min{|u − u′| : u′ ∈ Γ(x′)}. There is no restriction of

generality to assume that u /∈ Γ(x′). The set Γ(x′) is closed and convex; thus, the minimum

is attained at a unique point, u′ ∈ bd Γ(x′). Since u /∈ Γ(x′), function |u − u′| is differentiable

with respect to u′, with gradient −(u − u′)/|u − u′|. By Assumption (LI) and the convexity

of η, one can show4 that η is differentiable and the derivative Dη(x′) = −λD1g(x′, u′), with

λ =
(
(u − u′)/|u − u′|

)
D2g

+
σ (x′, u′). Hence, Dη(x′) = −

(
(u − u′)/|u − u′|

)
G(x′, u′). By the

convexity of η and the fact that η(x) = 0, we must have

η(x′)− η(x) = η(x′) ≤ Dη(x′) · (x− x′) = −
(
(u− u′)/|u− u′|

)
G(x′, u′) · (x′ − x).

Therefore, taking norms, we obtain |u− u′| ≤ ‖G(x′, u′)‖|x′ − x| for some u′ ∈ Γ(x′). �

Note that in Proposition 3.3 we assume that ‖G‖ is bounded by an integrable function γ(s).

Then, the correspondence Γ is globally Lipschitz in the sense defined in Clarke et al. [11].

The following result is actually a simple consequence of Theorem 3.11 in [11] on the Lipschitz

dependence of solutions with respect to initial conditions for the differential inclusion ẋ ∈ Γ(x).

Lemma 7.3 Let Γ be globally Lipschitz in x ∈ X. Then, for any fixed T ≥ t, the correspondence

x⇒ {xt(T, x) : ẋt(s, x) ∈ Γ(xt(s, x)), s ∈ [t, T ]} is globally Lipschitz on X.

As is well known [cf. Dmitruk and Kuź kina [13]], the existence of an optimal control

can be ensured under the following additional assumptions: (i) Correspondence x ⇒ Γ(x) is

upper semicontinuous and compact valued; and (ii) For any t ≤ T ′ < T ′′, the negative part

of the functional
∫ T ′′
T ′ `(xt(s), ẋt(s))β(s, t) ds converges to zero uniformly over all admissible

trajectories as T ′, T ′′ →∞. For completeness, we provide here sufficient conditions for existence

of optimal paths, which will allow us to establish condition 1 in Proposition 3.3. Let δ =

infs≥t δ(s).

Lemma 7.4 Let (A1)-(A2) hold. Assume that correspondence x ⇒ Γ(x) is upper semicon-

tinuous and compact valued. Moreover, for all pairs (x, u) ∈ Ω the following conditions are

satisfied:

1. For some constants α, η with α < δ

〈x, u〉 ≤ α(|x|2 + η). (26)

4e.g., Gauvin and Dubeau [15].
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2. For some constants C and K

|`(x, u)| ≤ C(|x|+K). (27)

Then, there exists an optimal solution x∗t ∈W 1,1
loc ([0,∞)) for problem (1), and the value function

satisfies |V (t, x)| ≤ a|x|+ b for suitable constants a, b. Furthermore,

lim
T→∞

β(T, t)V (T, xt(T )) = 0

for any feasible trajectory.

Proof. We only prove the linear growth condition on the value function and the property of

the limit. For any admissible xt, let y(s) = |xt(s)|2 +η. It follows from (26) that ż = 2〈xt, ẋt〉 ≤
2|xt||ẋt| ≤ 2ρy. Hence y(s) ≤ (|x0|2+η)e2α(s−t), and thus |xt(s)| ≤

(√
|x0|2 + η

)
eα(s−t). Then,

V (t, x0) =

∫ ∞
t

`(x∗t (s), ẋ
∗
t (s))β(s, t) ds ≤ C 1

δ − α
(√
|x0|2 + η +K

)
≤ a|x0|+ b,

for suitable constants a, b. The last claim of the lemma follows from the fact that V has linear

growth in x and the admissible trajectories are at most of exponential growth ρ. �

Now, we present some preparatory results for the proof of Proposition 3.4. From bound

(15) we establish a global Lipschitz property over a restricted domain. Rockafellar and Wets

[23], Example 9.14, provides a more limited result on global Lipschitzianity for bounded convex

functions.

Theorem 7.1 Let X ⊆ Rn+ be a convex set such that X + εB ⊆ Rn+ for some ε > 0. Let

f : Rn+ −→ R be a convex function such that f(x) ≤ a|x| + b for all x ∈ Rn+ and suitable

constants a, b ≥ 0. Assume that f is bounded below by some constant m. Then, f is globally

Lipschitz on X.

Proof. There is no loss of generality to let m = 0. Consider two arbitrary points x1, x2 ∈ X.

Let v = x2 − x1. Then, there are two possibilities for the line x1 + λv, λ ∈ R. Either the line

intercepts the boundary A = bdRn+ at two different points, or the line intercepts A at a single

point. In the first case, there exist y1, y2 ∈ A, ‖y1 − y2‖ ≥ 2ε, such that

y1 = x1 + λ1v,

y2 = x1 + λ2v,

with λ1, λ2 ∈ R of opposite sign. Observe that

τ =
|x1 − x2|
|y1 − y2|

< 1,
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since

|y1 − y2| = |y1 − x1|+ |x1 − x2|+ |x2 − y2| ≥ 2ε+ |x1 − x2|.
Let us consider convex combination x1 = τy1 + (1− τ)x2. By the convexity of f

f(x1) ≤ τf(y1) + (1− τ)f(x2).

Hence,

f(x1)− f(x2) ≤ τ(f(y1)− f(x2)) ≤ τ(f(y1)−m)

≤ a|y1|+ b−m
|y1 − y2|

|x1 − x2|.

Observe that expression
|y1|

|y1 − y2|
is bounded by 1 by the Pythagorean Theorem as |y1 − y2| ≥ 2ε. Thus, we have

f(x1)− f(x2) ≤
(
a+

b−m
2ε

)
|x1 − x2|. (28)

Now, pick convex combination x2 = τy2 + (1 − τ)x1. Using the same arguments, we get

inequality

f(x2)− f(x1) ≤
(
a+

b−m
2ε

)
|x1 − x2|.

It follows from these two inequalities that

|f(x1)− f(x2)| ≤
(
a+

b−m
2ε

)
|x1 − x2|.

If line x1 + λv intersects A at a single point, there is only one y1 ∈ A such that y1 = x1 + λ1v

for some λ1 < 0 (we can exchange the roles of x1 and x2 if needed), whereas yλ = x1 + λv ∈ X
for any λ > 0. Again, from x1 = τy1 + (1− τ)x2 we can arrive to inequality (28). Consider now

x2 = τyλ + (1− τ)x1 for yλ defined above. Then, as f(x2) ≤ τf(yλ) + (1− τ)f(x1) we have

f(x2)− f(x1) ≤ a|yλ|+ b−m
|yλ − y1|

|x1 − x2|,

which holds for every λ > 0. Letting λ→∞,

f(x2)− f(x1) ≤ a |x1 − x2|.

Hence,

|f(x1)− f(x2)| ≤
(
a+

b−m
2ε

)
|x1 − x2|.

Therefore, in all cases f is globally Lipschitz with constant

K = a+
b−m

2ε
.

�

The following result weakens the uniform lower bound m on f .
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Corollary 7.1 Let X ⊆ Rn+ be a convex set such that X + εB ⊆ Rn+ for some ε > 0. Let

f : Rn+ −→ R be a convex function such that −a′|x| − b′ ≤ f(x) ≤ a|x| + b for all x ∈ Rn+ and

for some constants a, b, a′, b′ ≥ 0. Then, f is globally Lipschitz on X.

Proof. Let us define function g(x) = f(x)+a′|x|+b′. This function fulfills all the hypotheses of

our theorem since it is convex, bounded below by m = 0, and bounded above by (a+a′)|x|+b+b′.
It follows that g is globally Lipschitz on X with Lipschitz constant K as estimated above. It is

then easy to see that |p| ≤ K for all p ∈ ∂g(x) and x ∈ X. Moreover,

∂g = ∂(f + a′| · |+ b′) = ∂f + a′∂| · |.

Hence, ∂f = ∂g− a′∂| · |. Observe that ∂| · |(x) = x
|x| for every point x ∈ X with |x| 6= 0. Then,

we have |q| ≤ K + a′ for q ∈ ∂f(x) and x ∈ X. Therefore, f is globally Lipschitz on X. �

The next proposition can be found in Aubin [6], Problem 22.

Proposition 7.2 Let H be a proper, concave, upper semicontinuous function from Rn × Rm

to R ∪ {−∞}. Let

H(x, q) = sup
u∈Rm

{f(x, u) + qu}.

Then, x 7→ H(x, q) is a concave mapping for a fixed q, and q 7→ H(x, q) is a convex mapping

for a fixed x. Moreover, the following conditions are equivalent

−(p, q) ∈ ∂f(x, u)

−p ∈ ∂xH(x, q) and u ∈ ∂qH(x, q).

Proof of Theorem 4.1. Suppose that the pair (x∗t , qt) satisfies the Hamiltonian inclusions

(20) with x∗t (t) = x0. It is well known that this condition along with (NB) and (21) constitute

a sufficient criterium for optimality of (x∗t , ẋ
∗
t ) for problem (1). For instance, the proof given in

Benveniste and Scheinkman [10] can be easily adapted to our framework; we do not repeat the

details here. Let us then assume that (x∗t , ẋ
∗
t ) is an optimal path with two associated paths of

dual variables qt and q′t satisfying both the Hamiltonian inclusions (20) and the transversality

condition (21). For x0 fixed, let

VT (t, x0) = max

∫ T

t
L (xt(s), ẋt(s))β(s, t) ds+ qt(T )xt(T )

subject to x(t) = x0,

(29)

and

V ′T (t, x0) = max

∫ T

t
L (xt(s), ẋt(s))β(s, t) ds+ q′t(T )xt(T )

subject to x(t) = x0.

(30)
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Note that the added linear parts qt(T )xt(T ) and q′t(T )xt(T ) are chosen so that (x∗t , ẋ
∗
t ) with

x∗t (t) = x0 is the optimal solution for both optimization problems. We can readily see that

functions VT (t, x0) and V ′T (t, x0) are concave; moreover, by the same arguments as in Lemma

3.3 these functions are of class C1 in x. By the transversality condition (21), the sequences of

functions {VT (t, x0)}T≥0 and {V ′T (t, x0)}T≥0 converge pointwise to function V (t, x0) as T →∞.

Hence, the sequences of derivative functions {DVT (t, x0)}T≥0 and {DV ′T (t, x0)}T≥0 converge

uniformly to function DV (t, x0) on every compact set K ⊂ int(X) [see [20], Theorem 25.7]. By

Remark 3.2 the convergence of these derivatives to a unique common value DV (t, x0) implies

that qt(T ) = q′t(T ). Therefore, we get uniqueness of the path of dual variables qt. �
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Figure 1: The flow mapping between ∂V (t, x0) and ∂V (T, x∗t (T )).
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