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Abstract. We provide a Hop–Lax formula for variational problems with non–constant

discount and deduce a dynamic programming equation. We also study some regularity

properties of the value function.

1. Introduction

We establish a Hopf–Lax formula for the Cauchy problem

(1)

{
−vt(x, t) + f(−vx) + ρ(t)v(x, t) = 0, in Rn × (0, T );

v = g, on Rn × {t = T},

involving a Hamilton–Jacobi equation with a linear dissipation term, ρ(t)v(x, t), and a

terminal condition at time t = T . The function f : Rn −→ R is assumed to be convex and

of class C2, ρ : [0, T ] −→ (0, 1] is continuous, and g : Rn −→ R is globally Lipschitz. The

formula is

v(x, t) = min
p∈Rn

{∫ T

t
dt(s)`

(
ι(d−1

t (s)p)
)
ds+ dt(T )g

(
x+

∫ T

t
ι(d−1

t (s)p) ds
)}

,

where ` is the convex conjugate of f , ι = (∇`)−1, and dt(s) = exp (−
∫ s
t ρ(r) dr). The

formula represents a Lipschitz solution that satisfies the Cauchy problem almost everywhere.

The classical Hopf–Lax formula applies to the case ρ ≡ 0 , and was given by Lax in [6],

for n = 1. It was extended later to general n by Hopf in [5]. Further generalizations have

maintained ρ = 0 but have considered functions f(t,−vx) also depending on time, [9]; or

functions f(v,−vx) depending on both v and vx, [2], with some additional requirements.

The case we analyze in this paper is not covered in any of these previous works.

Actually, we find a Hopf–Lax formula that applies to more general Hamilton–Jacobi

equations associated to the calculus of variations problems with variable discount.

These problems arise quite naturally in models of economics. Consider for instance the

following problem: an agent optimally chooses a consumption path of a given good, with

the aim of maximizing his/her satisfaction. This is measured by an utility function of
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consumption, `(u), along a given time interval, [0, T ]. It is customary in the literature to

postulate concavity in the preferences of the agent, and to suppose that he/she is impatient,

in the sense that the value of the utility attained today is higher than the utility attained

tomorrow. This is the meaning of introducing a discount factor or impatience rate in the

preferences of the agent.

Empirical studies suggest that people are more impatient about choices in the short run

than in the long run, implying that the discount rate applied to current choices is higher

than the one applied to far–in–the future choices. Thus, the discount factor should be taken

to be non–constant. Several papers have considered the non–constant discount case: see e.g.

[1], [4] or [7]1. In [1], the optimal growth model with time–varying discount is considered, for

a particular class of utility functions. A general problem, with infinite horizon, is analyzed

in [4], whereas [7] considers the finite horizon case with fixed or variable terminal time.

The last two papers use discretization and passage to the limit to find a Hamilton–Jacobi

equation that involves not only the unknown value function, but also a non–local term

involving integration throughout the unknown optimal solution. We provide conditions so

that the Hamilton–Jacobi equation involves only the derivatives of the value function and

find the dynamic programming equation by direct methods.

Given the significance of the non–constant discount preference rate in economics, it is of

interest to analyze in more detail this type of variational problems. First, deriving a Hopf–

Lax formula for the solution of the variational problem (Section 3); second, establishing a

modified dynamic programming equation, more amenable than the one found in previous

papers (Section 4); and third, studying the regularity of the value function (Section 5).

2. Variational problem with discount

We follow the presentation in [3]. Let the value function

(2) v(x, t) = inf
y∈ACx,t

{∫ T

t
dt(s)`(ẏ(s)) ds+ dt(T )g(y(T ))

}
,

where

ACx,t = {y : [t, T ] −→ Rn : y = y(s) absolutely continuous, y(t) = x}.

A typical element of this set will be called an arc. We will impose the following conditions.

A1: ` : Rn −→ R is C2, strictly convex, and lim
|u|→∞

`(u)
|u|

=∞;

A2: g is globally Lipschitz in Rn;

A3: d : [0, T ]× [0, T ] −→ (a, 1], with a > 0, is Lipschitz continuous with dt(t) = 1 for

each t.

1We consider only papers on continuous time.
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A straightforward interpretation of (2) has been done in the Introduction: a single agent,

with time–varying preference rate, chooses optimally over time. In another reading, there is

a continuum of agents, each one labelled by t ∈ [0, T ]; each agent (or generation) t applies

a possibly different discount factor, dt, in the calculation of the utility flow from t onwards.

At time T the optimization process finishes and agent T derives utility g(y(T )) (or “scrap

value”). The aim of each generation is to maximize the total discounted utility. In this

process, the t–generation is not so much concerned with the consumption of the future

generations as it is with respect its own consumption.

A common specification of dt(s) is

(3) dt(s) = exp
(
−
∫ s

t
ρ(r) dr

)
,

where ρ ∈ L∞([0, T ]). In this case dt(s) is Lipschitz in (t, s), which is the present value

at time t of one unit of utility at time s ≥ t. The rate of discount is ρ, and most often it

is considered constant. Other popular discount factors are those that depend only on the

elapsed time, dt(s) = θ(s− t) for s ≥ t, through a scalar function θ, with θ(0) = 1. As will

be seen in Section 4, the shape of the discount factor has a major effect in the structure of

the dynamic programming equation.

Let us define ι = (∇`)−1, the inverse of ∇`. Notice that by A1, both ∇` and ι are

continuous, and surjective. We also consider `∗(p) = supu∈Rn{p · u − `(u)}, the Legendre

transform of `. Finally, let the t–Hamiltonian

Ht(s, u, p) = p · u− dt(s)`(u).

Throughout the paper, ∇ denotes the gradient of a real function, and ∇2 the Hessian

Matrix. For a vector function, ∇ denotes the Jacobian matrix.

3. Hopf–Lax formula

A Hopf–Lax formula describes an infinite dimensional variational problem as a finite

dimensional one. In the present case, the formula is a little more involved than in the non–

discounted case, due to the non–autonomous term dt(s). Notice also that the problem at

hand is different from the one with a non–autonomous `(s, ẏ(s)), because the current date

t enters into the definition.
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Given t ∈ [0, T ], t ≤ s ≤ T , x, α ∈ Rn, consider

Ut,α(s) = ι(d−1
t (s)∇`(α)), (d−1

t = 1/dt)

Yx,t,α(s) = x+
∫ s

t
ι(d−1

t (r)∇`(α)) dr,

V (x, t, α) =
∫ T

t
dt(s)`(Ut,α(s)) ds+ dt(T )g

(
Yx,t,α(T )

)
.

Notice that Yx,t,α(s) is absolutely continuous and Yx,t,α(t) = x, thus it is an admissible arc,

i.e. it belongs to ACx,t. Observe also that Ẏx,t,α(s) = Ut,α(s).

We establish the following lemma to facilitate posterior quotation. It is a consequence of

assumption A1.

Lemma 3.1. For x ∈ Rn, t ∈ [0, T ), s ≥ t, the mappings α 7→ Ut,α(s), α 7→ Yx,t,α(s) are of

class C1 and surjective.

Theorem 3.1. (Hopf–Lax formula with discount). If x ∈ Rn and 0 ≤ t < T , then the

value function v = v(x, t) of the minimization problem (2) is given by

(4) v(x, t) = min
p∈Rn

{∫ T

t
dt(s)`(ι(d−1

t (s)p)) ds+ dt(T )g
(
x+

∫ T

t
ι(d−1

t (s)p) ds
)}

.

Proof. 1. For any α ∈ Rn

v(x, t) ≤
∫ T

t
dt(s)`(Ẏx,t,α(s)) ds+ dt(T )g(Yx,t,α(T )) = V (x, t, α),

and so

v(x, t) ≤ inf
α∈Rn

V (x, t, α).

2. On the other hand, for an arbitrary arc y(s), t ≤ s ≤ T , with y(t) = x, let α be such

that

Yx,t,α(T ) = y(T ).

This is possible by Lemma 3.1. For each t, s, p, the Hamiltonian Ht(·, u, ·) is concave, thus

for any α

(5) Ht(s, Ut,α(s),∇`(α)) ≥ Ht(s, ẏ(s),∇`(α)),

since
∂Ht(s, u,∇`(α))

∂u

∣∣∣∣
u=Ut,α(s)

= 0.



HOPF–LAX FORMULA WITH DISCOUNT 5

Let α = α defined above. Integrating (5) between t and T and rearranging terms we get∫ T

t
dt(s)`(Ut,α(s)) ds ≤

∫ T

t
dt(s)`(ẏ(s)) ds+∇`(α)

∫ T

t
(Ut,α(s))− ẏ(s)) ds

=
∫ T

t
dt(s)`(ẏ(s)) ds+∇`(α)

∫ T

t
(Ẏx,t,α(s))− ẏ(s)) ds

=
∫ T

t
dt(s)`(ẏ(s)) ds,

because Yx,t,α(t) = x = y(t) and Yx,t,α(T ) = y(T ). Adding dt(T )g(Yx,t,α(T )) = dt(T )g(y(T ))

to both terms of the above inequality we get that, for any arc y(s), there exist some α such

that

V (x, t, α) ≤
∫ T

t
dt(s)`(ẏ(s)) ds+ dt(T )g(y(T )).

Thus infα∈Rn V (x, t, α) ≤ v(x, t). Hence, infα∈Rn V (x, t, α) = v(x, t). Finally, observe that

minimization with respect to α is equivalent of minimization with respect to p = ∇`(α).

3. The infimum is in fact attained, since the function V (·, ·, α) is continuous and inf–

compact. Indeed, lim|α|→∞ |α|−1V (x, t, α) =∞ due to the assumptions A1–A3 and Lemma

3.1. �

DefineA(x, t) = argminα∈Rn V (x, t, α). Since lim|α|→∞ |α|−1V (x, t, α) =∞, A is compact

valued and an upper semicontinuous correspondence.

The following corollary is along the lines of the above proof.

Corollary 3.1. If x ∈ Rn and 0 ≤ t < T , then for any selection α(x, t) ∈ A(x, t), the arc

Yx,t,α(x,t)(s) is a solution of problem (2).

Remark 3.1. When dt(s) = 1 for all 0 ≤ t ≤ s ≤ T , (4) reduces to the classical Hopf–Lax

formula

v(x, t) = min
α∈Rn

{
(T − t)`

(
α− x
T − t

)
+ g(α)

}
,

after substituting α = x+ (T − t)ι(p).

For a locally Lipschitz function f , lip(f) will denote the Lipschitz parameter of f in a

given compact set K, and bound(f) will denote a bound of |f | in that set. Notice that

under our assumptions f = ι, d, d−1 are locally Lipschitz.

Theorem 3.2. (Lipschitz continuity). The value function v is locally Lipschitz continuous

in Rn × [0, T ] and

v = g on Rn × {t = T}.
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Proof. Let x, x̂ ∈ K ⊆ Rn with K compact, t, t̂ ∈ [0, T ) and α ∈ Rn. Let t̂ ∧ t = min{t̂, t}
and t̂ ∨ t = max{t̂, t}.

1. Let s ∈ [0, T ) and α ∈ Rn. Let us proceed to establish some Lipschitz estimates.

|Ut̂,α(s)− Ut,α(s)| ≤ lip(ι)|∇`(α)||d−1
t̂

(s)− d−1
t (s)|

≤ lip(ι)|∇`(α)| lip(d−1)|t̂− t| = C1|t̂− t|.

(6)

∫ T

t̂
dt̂(s)`(Ut̂,α(s)) ds−

∫ T

t
dt(s)`(Ut,α(s)) ds

≤
∫ T

t̂∨t
dt̂∨t(s)|`(Ut̂,α(s))− `(Ut,α(s))| ds+

∫ t̂∨t

t̂∧t
|dt̂∧t(s)− dt̂∨t(s)|`(Ut̂∧t,α(s))| ds

≤ bound(d) lip(`)C1|t̂− t|+ T lip(d) bound(`)|t̂− t|

= C2|t̂− t|.

|Yx̂,t̂,α(T )− Yx,t,α(T )| ≤ |x̂− x|+
∣∣∣∣∫ T

t̂
Ut̂,α(s) ds−

∫ T

t
Ut,α(s) ds

∣∣∣∣
≤ |x̂− x|+

∫ T

t̂∨t
|Ut̂,α(s)− Ut,α(s)| ds+

∫ t̂∨t

t̂∧t
|Ut̂∧t,α(s)| ds

≤ |x̂− x|+ TC1|t̂− t|+ bound(U)|t̂− t|

= |x̂− x|+ C3|t̂− t|.

(7)

|dt̂(T )g(Yx̂,t̂,α(T ))− dt(T )g(Yx,t,α(T ))| ≤ |dt̂(T )− dt(T )||g(Yx̂,t̂,α(T )|

+ dt(T )|g(Yx̂,t̂,α(T ))− g(Yx,t,α(T ))|

≤ lip(d) bound(g)|t̂− t|

+ lip(g) bound(d)
(
|x̂− x|+ C3|t̂− t|

)
≤ C4(|x̂− x|+ |t̂− t|).

2. Choose α ∈ A(x, t). Then, by definition of v and estimates (6) and (7)

v(x̂, t̂)− v(x, t) ≤ V (x̂, t̂, α)− V (x, t, α)

=
∫ T

t̂
dt̂(s)`(Ut̂,α(s)) ds−

∫ T

t
dt(s)`(Ut,α(s)) ds

+ dt̂(T )g(Yx̂,t̂,α(T ))− dt(T )g(Yx,t,α(T ))

≤ C2|t̂− t|+ C4(|x̂− x|+ |t̂− t|).

Reversing the role of (x̂, t̂) and (x, t) we get the desired Lipschitz property.
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3. Now, let x ∈ Rn, t < T and define δt =
∫ T
t dt(s) ds. Choose α ∈ Rn such that∫ T

t Ut,α(s) ds = 0; this is possible by virtue of Lemma 3.1. Let b = maxs∈[t,T ] |Ut,α(s)|, and

let bound(`) be a bound of |`| in [−b, b]. Then,

(8) v(x, t) ≤
∫ T

t
dt(s)`(Ut,α(s)) ds+ dt(T )g(x) ≤ bound(`)δt + dt(T )g(x).

Moreover,

v(x, t) ≥ dt(T )g(x) + min
α∈Rn

{
− lip(g)dt(T )

∣∣∣ ∫ T

t
Ut,α(s) ds

∣∣∣+
∫ T

t
dt(s)`(Ut,α(s)) ds

}
≥ dt(T )g(x) + dt(T )δt min

α∈Rn

{
− lip(g)δ−1

t

∣∣∣ ∫ T

t
Ut,α(s) ds

∣∣∣+ `

(
δ−1
t

∫ T

t
dt(s)Ut,α(s) ds

)}
,

where the first inequality holds since g is Lipschitz, and the second one is simply Jensen’s

inequality. Now, notice that for any α ∈ Rn

∫ T
t Ut,α(s) ds∫ T

t dt(s)Ut,α(s) ds
→ 1 as t→ T− (componentwise)

thus, for every t close enough to T , there exists ε > 0 such that

v(x, t) ≥ dt(T )g(x) + dt(T )δt min
α∈Rn

{
− lip(g)(1 + ε)δ−1

t

∣∣∣ ∫ T

t
dt(s)Ut,α(s) ds

∣∣∣
+ `

(
δ−1
t

∫ T

t
dt(s)Ut,α(s) ds

)}
= dt(T )g(x)− dt(T )δt max

z∈B
max
α∈Rn

{
zδ−1
t

∫ T

t
dt(s)Ut,α(s) ds

− `

(
δ−1
t

∫ T

t
dt(s)Ut,α(s) ds

)}
,

where B = [− lip(g)(1 + ε), lip(g)(1 + ε)]. Then

(9) v(x, t) ≥ dt(T )g(x)− dt(T )δt max
z∈[− lip(`)(1+ε),lip(`)(1+ε)]

`∗(z),

since α −→
∫ T
t dt(s)Ut,α(s) ds is surjective. Thus, by (8) and (9)

|v(x, t)− dt(T )g(x)| ≤ Cdt(T )δt

for an appropriated constant C. Given that dt(T ) tends to 1 and δt tends to 0 as t → T ,

we are done. �
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4. Dynamic programming equation

For any y ∈ ACx,t and t ≤ τ ≤ T , let Yτ denote an optimal arc from initial condition

(y(τ), τ), that is,

Yτ (s) = Yy(τ),τ,α(y(τ),τ)(s),

which exists by Corollary 3.1.

Consider for t < τ ≤ T the function

W (x, t, τ) =
∫ T

τ
(dt(s)− dτ (s))`(Ẏτ (s)) ds+ (dt(T )− dτ (T ))g(Yτ (T ))

Lemma 4.1. For every initial condition (x, t), admissible arc y ∈ ACx,t and t ≤ τ ≤ T ,

we have

(10) v(x, t) ≤
∫ τ

t
dt(s)`(ẏ(s)) ds+ v(y(τ), τ) +W (x, t, τ).

Proof. Let y ∈ ACx,t be fixed but arbitrary. If τ = T , then y(T ) = YT (T ) and v(y(T ), T ) =

dT (T )g(y(T )) = g(YT (T )). Then (10) reduces to v(x, t) ≤
∫ T
t dt(s)`(ẏ(s)) ds+dt(T )g(y(T )),

which is true by the definition of v. Now, suppose τ < T . Let α(y(τ), τ) ∈ A(y(τ), τ). Then,

by Corollary 3.1 ∫ T

τ
dτ (s)`(Ẏτ (s)) ds+ dτ (T )g(Yτ (T )) = v(y(τ), τ).

Let us define the admissible arc ỹ ∈ ACx,t by

ỹ(s) =

{
y(s), if t ≤ s ≤ τ ;

Yτ (s), if τ < s ≤ T .

We have

v(x, t) ≤
∫ T

t
dt(s)`( ˙̃y(s)) ds+ dt(T )g(ỹ(T ))

=
∫ τ

t
dt(s)`(ẏ(s)) ds+

∫ T

τ
dτ (s)`(Ẏτ (s)) ds+ dτ (T )g(Yτ (T ))

+
∫ T

τ
(dt(s)− dτ (s))`(Ẏτ (s)) ds+ (dt(T )− dτ (T ))g(Yτ (T ))

=
∫ τ

t
dt(s)`(ẏ(s)) ds+ v(y(τ), τ)

+
∫ T

τ
(dt(s)− dτ (s))`(Ẏτ (s)) ds+ (dt(T )− dτ (T ))g(Yτ (T )).

�
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Corollary 4.1. (Dynamic Programming). For every initial (x, t) and t ≤ τ ≤ T

(11) v(x, t) = min
y∈ACx,t

{∫ τ

t
dt(s)`(ẏ(s)) ds+ v(y(τ), τ)

}
+W (x, t, τ).

Proof. In fact (10) is an equality since an optimal arc is attained for every initial condition

x, t, by Corollary 3.1. �

Now consider the function

(12) w(x, t, α) = −
∫ T

t

∂dt
∂t

(s) `(Ut,α(s)) ds− ∂dt
∂t

(T ) g(Yx,t,α(T )).

The (generalized) dynamic programming equation is as follows. It could be obtained for a

more general optimal control problem with some additional assumptions.

Theorem 4.1. (Dynamic Programming Equation). Suppose that for every t ≤ s ≤ T ,

dt(s), (∂/∂t)dt(s) are continuous in t and summable in s. Let (x, t) be a point at which the

value function v is differentiable. Then:

(13) −vt(x, t) + `∗(−vx(x, t)) + w(x, t, α(x, t)) = 0, in Rn × (0, T ).

Proof. 1. By Lemma 4.1, if t+ h < T

(14)

v(x, t)− v(y(t+ h), t+ h)) ≤
∫ t+h

t
dt(s)`(ẏ(s)) ds

+
∫ T

t+h
(dt(s)− dt+h(s))`(Ẏt+h(s)) ds

+ (dt(T )− dt+h(T ))g(Yt+h(T )),

for any y ∈ ACx,t.

2. The correspondence A is compact valued and upper semicontinuous, hence we can

assume limh→0+ α(y(t + h), t + h) ∈ A(x, t); we denote the limit by α(x, t). By continuity

limh→0+ Yt+h(s) = Yt(s), and limh→0+ Ẏt+h(s) = Ẏt(s). Then,

lim
h→0+

h−1(dt(T )− dt+h(T ))g(Yt+h(T )) = −∂dt
∂t

(T )g(Yt(T )),

and

lim
h→0+

h−1

∫ T

t+h
(dt(s)− dt+h(s))`(Ẏt+h(s)) ds = −

∫ T

t

∂dt
∂t

(s) `(Ẏt(s)) ds.

3. Taking limits in (14)

lim
h→0+

h−1
(
v(x, t)− v(y(t+ h), t+ h)

)
≤ lim

h→0+
h−1

∫ t+h

t
dt(s)`(ẏ(s)) ds

− lim
h→0

h−1W (x, t, t+ h)
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for every y ∈ ACx,t. This yields

−vt(x, t)− vx(x, t) · u− `(u) + w(x, t, α(x, t)) ≤ 0

for every u ∈ Rn. Recalling the definition of `∗, this is equivalent to

−vt(x, t) + `∗(−vx(x, t)) + w(x, t, α(x, t)) ≤ 0.

4. To prove the equality, we use the same argument. Notice that equality holds in (14) for

y(s) = Yt(s). �

Remark 4.1. If ∂dt
∂t (s) = ρ(t)dt(s) for some continuous function ρ, then equation (12)

gives w(x, t, α(x, t)) = ρ(t)v(x, t) hence, (13) takes the form of a Hamilton–Jacobi equation

with a dissipation term

−vt(x, t) + `∗(−vx(x, t)) + ρ(t)v(x, t) = 0, in Rn × (0, T ).

This happens if and only if (3) holds, since we are assuming dt(t) = 1 for each t.

In the general case, the dynamic programming equation (13) has a complicated structure.

Indeed, the optimal arc itself enters the formulation as a non–local term, thus the applica-

bility of the equation should be taken with caution. In contrast, the solution given in (4) is

simpler. This stresses the usefulness of having a Hopf–Lax formula at hand. Nevertheless,

we can give a more amenable form to the dynamic programming equation, close to classical

standards, when assuming that both the value function and function g are differentiable.

This is the content of the next theorem.

Theorem 4.2. With the same assumptions as in Theorem 4.1, assume further that ∇2`(u)

is definite positive for every u ∈ Rn and that g is differentiable; then, the dynamic program-

ming equation (13) is

(15) −vt(x, t) + `∗(−vx(x, t)) + w(x, t, ι(−vx(x, t))) = 0, in Rn × (0, T ).

Proof. Since we are supposing v is differentiable, Danskin’s Theorem applied to (4) gives

vx(x, t) = dt(T )∇g
(
Yx,t,α(x,t)(T )

)
.

On the other hand, α is an unrestricted minimum of V , hence

0 = Vα(x, t, α)

=
(
∇`(α) + dt(T )∇g

(
Yx,t,α(T )

))(∫ T

t
d−1
t (s)∇ι

(
d−1
t (s)∇`(α)

)
ds

)
∇2`(α)

=
(
∇`(α) + vx(x, t)

)(∫ T

t
d−1
t (s)∇ι

(
d−1
t (s)∇`(α)

)
ds

)
∇2`(α).
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Since ∇2` has maximal rank and ∇ι(·) = (∇2`(·))−1, the gradient of V with respect to α is

the null vector only if ∇`(α) = −vx(x, t) and then α(x, t) = ι(−vx(x, t)) at points of differ-

entiability of v (incidentally, this shows that α must be unique at points of differentiability

of v). Plugging this value for α into w(x, t, α) we reach the expression for the dynamic

programming equation asserted in the theorem. �

5. Regularity of the value function

By Rademacher’s Theorem, a locally Lipschitz function is almost everywhere differen-

tiable. Thus, by Theorem 3.2, the value function v, which is characterized by (4) also

satisfies the dynamic programming equation almost everywhere. Summarizing:

Theorem 5.1. With the same assumptions as in Theorem 4.2, the function v defined by

the Hopf–Lax formula (4) is the value function (2), which is locally Lipschitz continuous in

Rn × [0, T ), and solves the terminal value problem (in a generalized sense)

(16)

{
−vt + `∗(−vx) + w(x, t, ι(−vx)) = 0, a.e. ∈ Rn × (0, T );

v = g, on Rn × {t = T}.

In the conditions of the above theorem, for the particular case of the Hamilton–Jacobi

equation with dissipation we have

Corollary 5.1. Function v given by (4) with dt(s) = exp
(
−
∫ s
t ρ(r) dr

)
, t ≤ s ≤ T is

locally Lipschitz continuous in Rn × [0, T ), and solves the terminal value problem (1).

Now we establish some results on the smoothness of the value function.

Theorem 5.2. With the same assumptions as in Theorem 4.2, suppose further that g is

convex.

(1) If g is of class C1, then the value function v is differentiable in Rn × (0, T ) and the

minimizer α is continuous.

(2) If g is of class C2 and ∇g is bounded, then the value function v is also of class C2

in Rn × (0, T ) and the minimizer α is of class C1 in Rn × (0, T ).

Proof. The minimizers α in (4) satisfy

(17) ∇`(α) + dt(T )∇g (Yx,t,α(T )) = 0,

as shown in the proof of Theorem 4.2.

1. For x, t fixed but arbitrary, the mapping α 7→ ∇`(α) + dt(T )∇g (Yx,t,α(T )) is strictly

monotone due to the convexity of g and the strict convexity of `, thus α(x, t) is unique; as a

correspondence, {α(x, t)} is upper semicontinuous thus, as a function it is continuous. The

uniqueness of α leads to the differentiability of the value function, by Danskin’s Theorem.
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2. The derivative of the L.H.S. of (17) with respect to α is(
I + dt(T )∇2g(Yx,t,α(T ))

∫ T

t
d−1
t (s)∇ι

(
d−1
t (s)∇`(α)

)
ds

)
∇2`(α),

with I being the identity matrix. Given our assumptions, this vector has norm ≥ 1 hence,

(17) locally defines α(x, t) of class C1. This function is defined globally since the mapping

α 7−→ ∇`(α) + dt(T )∇g (Yx,t,α(T )) is proper because

lim
α→±∞

(
∇`(α) + dt(T )∇g (Yx,t,α(T ))

)
= ±∞.

By Danskin’s Theorem, vx(x, t) = dt(T )∇g(Yx,t,α(x,t)(T )) is of class C1 hence, by the dy-

namic programming equation (15), vt is also of class C1. �

Finally, a result concerning the monotonic behavior of α in the scalar case.

Theorem 5.3. With the same assumptions as in Theorem 4.1 with n = 1, assume further

that g is convex and of class C2.

(1) For each time 0 < t < T , there exists for all but at most countably many values of

x ∈ R a unique point α(x, t) where the minimum in (4) is attained.

(2) The mapping x 7→ α(x, t) is nondecreasing.

Proof. Since v is locally Lipschitz, it is differentiable almost everywhere, thus the minimum

α is unique almost everywhere. On the other hand, the crossed derivative of V (x, t, α) with

respect to x and α is

dt(T )∇2`(α)∇2g(Yx,t,α)
∫ T

t
d−1
t (s)∇ι(d−1

t (s)∇`(α)) ds ≥ 0.

Hence, (x, α) 7→ V (x, t, α) is supermodular, and by Topkis’ Theorem, [8], A(x, t) is a

nonempty compact sublattice which admits a lowest element, which we denote again by

α(x, t), satisfying α(x2, t) ≥ α(x1, t) whenever x2 > x1. Then the mapping x 7→ α(x, t) is

non–decreasing and thus continuous for all but at most countably many x. �
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