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Abstract

In this paper the optimal management of an aggregated dynamic pension fund is studied. To

cover the promised liabilities to the workers at the age of retirement, the plan sponsor contin-

uously manage time–varying funds. He or she can choose the rate of contribution to the fund,

the investment in a given number of risky assets and a security with constant rate of return.

The problem of maximizing the probability that the fund assets achieve some prescribed goal

before some undesirable lower value, or ruin point is first considered. Secondly, the problem

of minimizing (resp. maximizing) the expected discounted cost of reaching a ruin point (resp.

beating a desired objective) is solved. Finally, maximization of utility function when the fund

can suddenly terminate is analyzed. The main finding is that the optimal investment policies

are of constant proportionality type.

Journal of Economic Literature Classification Numbers: G23, G11.

Subject and Insurance Branch Codes: E13, B81.
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1 Introduction

Pension funds currently represent one of the most important institutions in financial markets

because of their high investment capacity and because they complement the role of the Gov-

ernment, allowing those workers who have reached retirement age to maintain their standard

of living. These two aspects justify the interest generated over recent years in the study of the

optimum management of pension plans.

There are two principal alternatives in the design of pension plans in correspondence to the

assignation of risk. In a defined contribution plan the risk derived from the fund management

is borne by the beneficiary. However, in a defined benefit plan, where the benefits are normally

related to the final salary level, the financial risk is assumed by the sponsor agent.

This paper studies the model of a defined benefit plan, as described in Haberman and Sung

(1994), Boulier et al (1995), Cairns (2000) or Josa–Fombellida and Rincón–Zapatero (2001,

2004). In all these papers the objective of the sponsor is to keep the fund assets as close

as possible to the actuarial liability. To this end, the plan sponsor can choose the rate of

contribution to the fund, the investment in a given number of risky assets and a security with

constant rate of return. The optimal contribution rate corresponds to what in the literature is

called a spread method of funding. This type of funding method is quite popular in actuarial

practice, because of its simplicity and good stability properties. Bowers et al (1979), Cairns and

Parker (1997) and Haberman et al (2000) constitute examples of the use of this method in the

literature.

In this paper we consider the problem from a different point of view. We look at three different

objectives for the sponsor, that at first sight seems to be different and mutually exclusive, but in

fact, it turns out that with an adequate selection of the parameters involved, some of them are

simultaneously attained. A resume with the cases where this happens is given in Tables 5 and 6

at the end of the paper. We consider the following cases. First, the sponsor wishes to maximize

the probability that the fund assets achieve a fixed target value, before a fixed bankruptcy

value. Secondly, the sponsor’s aim is to minimize the expected discounted penalization cost
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associated to an inadmissible high value of the unfunded actuarial liability, or to maximize the

expected discounted reward of attaining a given surplus level. These type of problems, that

mathematically are of stochastic control of Dirichlet type, have been considered in Pestien and

Sudderth (1985) and more recently in Browne (1997, 1999) in different contexts. In the third

and last case, the sponsor maximizes some utility function along an infinite horizon, when the

date of abrupt termination of the funding process is random, with exponential distribution.

The main result is that in all cases the optimal investment decisions are proportional to the

unfunded actuarial liability, which is the difference between the liabilities and the fund assets.

Hence the optimal policies require more risk to be assumed when this variable takes a large

value than when it is near zero.

The paper is organized as follows. Section 2 defines the elements of the pension scheme and

describes the financial market where the fund is investing. Under the assumption that the

contributions are of spread method type, the evolution of the fund assets is obtained. In Section

3 we solve the problem of maximizing the probability that the unfunded actuarial liability

decreases to zero before it reaches a ruin value. In Section 4 the problem of minimizing the

cost (resp. maximizing a recompense) of reaching a ruin point (resp. of attaining a target fund

level) is analyzed. Section 5 shows the optimal investment when there is a positive probability

of sudden termination of the pension plan. Finally, Section 6 is dedicated to establishing some

conclusions. In Appendix A the general results we need on stochastic control are stated. All

proofs are in Appendix B.

2 The pension model

The pension plan we take into account is of aggregated type, thus the variables listed below

refer to the total group of participants. To cover the promised liabilities to the workers at the

age of retirement, the plan sponsor continuously withdraws time–varying funds. The principal

elements intervening in the funding process and the essential hypotheses allowing its temporary

evolution to be determined are as follows.
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Notation of the elements of the pension plan

F (t) : Value of fund assets at time t.

P (t) : Benefits promised to the participants at time t, that we suppose to be deter-

ministic. They are related with the salary at the moment of retirement.

C(t) : Contribution rate made by the sponsor at time t to the funding process.

AL (t) : Actuarial liability at time t, that is, total liabilities of the sponsor.

NC (t) : Normal cost at time t; if the fund assets match the actuarial liability, and if

there are no uncertain elements in the plan, the normal cost is the value of

the contributions allowing equality between asset funds and obligations.

SC (t) : Supplementary cost at time t, equal to C(t)−NC (t).

M(s) : Percentage of the value of the future benefits accumulated until age s ∈ [a, d],

where a is the common age of entrance in the fund and d is the common age

of retirement.

δ : Constant rate of valuation of the liabilities, which can be specified by the

regulatory authorities.

We suppose that functions P and M are both differentiable.

As mentioned in the Introduction, a spread method of fund amortization will be used. Thus we

will assume that the supplementary contribution rate is proportional to the unfunded actuarial

liability, SC(t) = k(AL (t)− F (t)), that is

C(t) = NC(t) + k(AL(t)− F (t)), (1)

with k being a constant selected by the employer, representing the rate at which surplus or deficit

is amortized. A negative value of k when the fund is underfunded (resp. overfunded) means that

the contribution is below (resp. above) the normal cost. Actuarial practice takes 1/k equal to a

continuous annuity with amortization over m years, an extreme case being a perpetual annuity,

m = ∞. However, some theoretical studies as e.g. O’Brien (1987), Haberman and Sung (1994)

or Josa–Fombellida and Rincón–Zapatero (2001, 2004) in a framework close to this paper, show
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that proportional funding, SC = k(AL − F ), is optimal with 1/k not necessarily given by an

annuity. Instead of, parameters defining the preferences of the sponsor and some characteristics

of the stock market enter in the definition of k; we refer the reader to the aforementioned papers

for the exact details. Hence, we consider an alternative range for k than actuarial practice

suggest. Furthermore, the control problems we study are degenerated for some values of k, in

the sense that they are not truly stochastic problems or that they do not have solution, at least

such as these problems are settled here—without constraints affecting investment decisions—.

The actuarial functions AL and NC are

AL(t) =
∫ d

a
e−δ(d−s)P (t+ d− s)M(s) ds,

NC(t) =
∫ d

a
e−δ(d−s)P (t+ d− s)M ′(s) ds,

respectively, and they are linked by the ordinary differential equation

AL′(t) = δAL(t) +NC(t)− P (t), t ≥ 0, (2)

as proven in Bowers et al (1979).

The function M satisfies 0 ≤ M(s) ≤ 1 for all s, M(s) = 0 for s ≤ a and M(s) = 1 for s ≥ d.

The most simple case is when the number of employees accumulates uniformly along the interval

[a, d], that is, M(s) = (s− a)(d− a)−1, a < s < d. Aside from the constant benefit case, a usual

model is the exponential model, where it is supposed that the benefits, as well the salary, grow

at an exponential rate. In this case, AL and NC are also exponential functions. We do not

restrict ourselves to this model.

In the rest of this section we describe the financial market where the fund operates. Given

an n–dimensional standard Brownian motion w = (w1, . . . , wn)>, we consider the complete

probability space (Ω,F ,P) generated by it, that is to say, F is the filtration {Ft}t≥0 , with

Ft = σ {w1(s), . . . , wn(s); 0 ≤ s ≤ t} .

The plan sponsor manages the fund by means of a portfolio formed by n risky assets
{
Si
}n

i=1
,

which are correlated geometric Brownian motions, generated by w and a riskless asset S0, as
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proposed in Merton (1971), that is, whose evolutions are given by the equations:

dS0(t) = rS0(t)dt, with r > 0, (3)

dSi(t) = Si(t)
(
bidt+

n∑
j=1

σijdwj(t)
)
, i = 1, 2, ..., n. (4)

It is assumed bi > r for all i, so the sponsor has incentives to invest with risk. The amount of

fund invested in time t in the risky asset Si is denoted by λi(t), i = 1, 2, . . . , n. The remainder,

F (t) −
∑n

i=1 λi(t), is invested in the bond. Borrowing and shortselling is allowed. A negative

value of λi means that the sponsor sells a part of his risky asset Si short while, if
∑n

i=1 λi is

larger than F , then he or she gets into debt to purchase the stocks, borrowing at the riskless

interest rate r. In all cases studied, the efficient portfolio does not imply short–selling. We

suppose {Λ(t) : t ≥ 0}, with Λ(t) = (λ1(t), λ2(t), . . . , λn(t))>, is a control process adapted to

filtration {Ft}t≥0, Ft–measurable, markovian and stationary, satisfying E
∫ s
0 Λ(t)>Λ(t)dt <∞,

for all s.

Therefore, the fund dynamic evolution under the investment policy Λ is:

dF (t) =
n∑

i=1

λi(t)
dSi(t)
Si(t)

+

(
F (t)−

n∑
i=1

λi(t)

)
dS0(t)
S0(t)

+ (C(t)− P (t)) dt. (5)

By substituting (3) and (4) in (5), we obtain:

dF (t) =
(
rF (t) +

n∑
i=1

λi(t)(bi − r) + C(t)− P (t)
)
dt+

n∑
i=1

n∑
j=1

λi(t)σij dwj(t), (6)

with initial condition F (0) > 0.

Next we will assume the notation: σ = (σij), b = (b1, b2, . . . , bn)>, 1 = (1, 1, . . . , 1)> and

Σ = σσ>. We take as given the existence of Σ−1, that is to say, σ−1. Finally the vector of

standardized risk premia or Sharpe ratio of the portfolio is denoted by θ = σ−1 (b− r1) .

So, we can write (6) as:

dF (t) =
(
rF (t) + Λ>(t)(b− r1) + C(t)− P (t))

)
dt+ Λ>(t)σdw(t), (7)

that, with the initial condition F (0), determines the fund evolution. Substituting (1) into

equation (7) it takes the form

dF (t) =
(
rF (t) + Λ>(t)(b− r1) +NC(t) + k(AL(t)− F (t))− P (t)

)
dt+ Λ>(t)σdw(t). (8)
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We assume throughout the paper that the technical interest rate coincides with the rate of return

of the bond, that is, δ = r, although the results could be extended to δ 6= r.

So, by (2), in terms of X = F −AL equation (8) reads:

dX(t) =
(
(r − k)X(t) + Λ>(t)(b− r1)

)
dt+ Λ>(t)σdw(t), (9)

with the initial condition X(0) = x. Note that when X < 0, k > 0 has the effect of diminishing

(augmenting when k < 0) the rate of interest that is being charged on the unfunded liability.

The situation is reversed if X > 0.

To stress the influence of the investment vector we will writeXΛ(t) instead ofX(t). Furthermore,

since we are going to use dynamic programming, we need to solve the optimization problem for

every initial condition X(0), that we denote by x. Hence XΛ(t) = F (t) − AL (t) as a process

but x = F −AL as a fixed initial value.

It is important to emphasize that although the functional form of the contributions is fixed in

(1), its evolution is uncertain, depending on the fund assets. In the following we consider the

new variable X = F −AL .

3 Maximizing the probability of reaching an objective

In this section we analyze the case where the objective of the sponsor is to maximize the

probability that X reaches the value 0 prior to other undesirable value, denoted ` = F − AL .

The value of F < AL could be imposed by the authorities as a legal minimum floor that

fund assets cannot go below because it is considered as a non–return point or “ruin” point.

Unfortunately, the problem so formulated does not have a solution, as will be shown in Remark

3.3. In consequence, we set the problem as follows: maximize the probability that X reaches

the value u before the ruin value `, with ` < u < 0 and u as close to 0 as desired. Note that

we are considering here the case where the fund is below AL (underfunded case). In the region

where the fund is over AL (overfunded case) the objective is to increase X as much as possible,

so the problem is to maximize the probability that X reaches u before ` with 0 < ` < u. The
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formulations of the problem in both regions are quite similar, but the hypotheses needed and

the results obtained are different.

Let us denote by U(x) the maximum value of the probability to attain u prior to ` when ` < x < u

U(x) = sup
Λ∈Ax

Px

(
τΛ
` > τΛ

u

)
= sup

Λ∈Ax

Px

(
τΛ
`u = τΛ

u

)
,

where, for instance, τΛ
` is the first time X hits the value ` when the investment policy is Λ. See

Appendix A for the definitions and notation.

3.1 Underfunded region, u < 0

In this case we restrict our attention to k < r. When the contribution effort is less than the

force of interest, fund dynamics might cease to be mean reverting because the amortization

rate is not strong enough to overcome the effect of interest on the fund, so there is a positive

probability of ruin. On the contrary, as shown by (9), when k ≥ r the problem is not a genuine

ruin problem, since that full investment in the bond ensues that X is strictly increasing (k > r)

or constant (k = r). However, when k < r, 100% investment in cash leads the fund to the

ruin point. In real world, pension managers choose k ≥ r, with equality if 1/k is the value of a

perpetual annuity at interest rate r. As we have just seen, this practice avoids ruin. However, it

is interesting to elucidate if there is or not a mechanism minimizing the probability of ruin, even

if the contribution rate effort k is less than r, because then total expected contribution could

be lowered. The next result shows that such a mechanism exists and is, of course, a sensible

portfolio management. Here is a typical tradeoff problem in pension fund management: lowering

contributions at expense of taking on more risk.

In the next proposition recall that the market price of risk θ is defined as θ = σ−1 (b− r1).

Proposition 3.1 Assume k < r and ` < x < u < 0. The optimal investment strategy is given

by

ΛU (X) = −2(r − k)
θ>θ

Σ−1(b− r1)X =
2(r − k)
θ>θ

Σ−1(b− r1)(AL − F ) (10)
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and the value function by

U(x) =
|x|α − |`|α

|u|α − |`|α
=

(AL − F )α − |`|α

|u|α − |`|α
, (11)

where α = 1 + θ>θ/(2(r − k)).

The policy ΛU given by (10) is of constant proportion type. These policies are widely used

in practice due to their simplicity and because they appear as optimal investment strategies

in many related problems (see e.g. Pestien and Sudderth (1985) and Browne (1998)). The

optimal behavior of the sponsor is to allocate fixed constant proportions of the difference of the

obligations and the fund assets, taking on more risk when the difference is large. In fact, the

risky investment is maximum near the ruin point, when F = F , and then it decreases as the

fund gets closer to AL . Since the optimal solution does not depend on ` and u, it is clear that

this policy also minimizes the probability of ruin.

The role of k in the solution agrees with commonsense: an increase in k, that is, an increase

in the contributions, allows a reduction in the amount invested in the portfolio. Then, if the

plan sponsor or the employees wish to reduce the contributions, it must be compensated for by

taking a greater risk.

Remark 3.1 Although investment strategies does not involve shortselling, borrowing can be

necessary. The sponsor borrows money at rate r to invest in asset i, λi,U ≥ F , if and only

if 0 ≤ F ≤ νiAL , with νi = eiΣ−1(b − r1)/(α − 1 + eiΣ−1(b − r1)) where ei is defined as

ei =
i)

(0, . . . , 1, . . . , 0). He or she must borrow to invest in some stock,
∑n

i=1 λi,U ≥ F , if and only

if 0 ≤ F ≤ ν0AL , with ν0 = 1>Σ−1(b− r1)/(α− 1 + 1>Σ−1(b− r1)).

Remark 3.2 Under policy ΛU (9) is

dXΛU (t) = −(r − k)XΛU (t)dt− 2(r − k)
θ>θ

XΛU (t)θ>dw(t), for 0 ≤ t ≤ τΛ
`u,

which is a geometric Brownian motion with drift parameter −(r− k)X and diffusion coefficient

(at the square) 4(r − k)2X2. Therefore it is immediate to check that

Px(τ` > τu) =
ψ(x)− ψ(`)
ψ(u)− ψ(`)

= U(x),
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where ψ is the associated scale function to the stochastic process XΛU ; see Karlin and Taylor

(1981).

Remark 3.3 We have found an investment policy maximizing the probability of reaching u

before ` < u for every u < 0. It is easy to see that it is impossible to achieve u = 0 with

this policy in finite time. This is because 0 is an unattainable barrier for a geometric Brownian

motion, as shown in Karlin and Taylor (1981). Thus τΛU
0 = ∞ and there is no optimal policy

for the problem. Following Browne (1997), ε–optimal strategies could be constructed.

Illustration of the results. It is worth comparing the total size of expected contributions

when k < r and k′ > r, respectively. Recall that in the former case the optimal strategy is given

by (10), whereas for the latter, full investment in the bond is assumed. Our aim is to show that

an active management of the fund can diminish the total expected discounted contributions, at

expense of incurring in some small positive probability of ruin. After some theoretical results are

provided—the analytical expression for the expected time of exit of the interval (`, u), and for the

expected value of contributions—, we proceed to carry out some numerical illustrations of that

fact. As the stochastic problem is solved in closed form, the sponsor can decide ex–ante which

value of k chooses, since that she/he exactly knows how the dependence of the outcome with

respect to k is. For a given environment, the selection of k fully determines the probability of

success and the size of total expected contributions. It is a discretional decision of the sponsor to

choose the more satisfactory combination of admissible shortfall probability/amortization effort

possibilities. We will distinguish two different attitudes of the sponsor: one is named sensible

management , and corresponds to a selection of k < r, indicating that the sponsor is willing to

incur in some risk if it is possible to considerably reducing total expected amortization; the other

is designed as secure management, k′ > r and Λ ≡ 0, for a sponsor that prefers driving the fund

to a higher value for sure, although at the expense of a higher amortization effort and longer

periods of time until reaching the objective. The reader must be aware that the property does

not hold for every admissible values of the parameters defining our problem, but for a relevant

range of values that we think is soundness in applications. Since the variety in the parameters
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intervening, it seems to be not easy to prove general properties of the fund attaining the size of

expected total contributions under sensible/secure management. For this reason, we concentrate

ourselves to some numerical experiments.

Expected value of total contribution with sensible management, k < r.

Let us consider T (x) = Exτ
Λ
`u and Ex

∫ τΛ
`u

0 e−rtCk(t) dt, the expected time of exit of the interval

(`, u) of XΛU , and the accumulated expected value of discounted contributions until exit of the

interval (`, u), respectively, with ` < x = XΛU (0) < u < 0. By the definition in (1)

Ex

∫ τΛ
`u

0
e−rtCk(t) dt = Ex

∫ τΛ
`u

0
e−rtNC (t) dt−kEx

∫ τΛ
`u

0
e−rtXΛU (t) dt ≡ NC

r
(1−R(x))−kS(x),

with R(x) denoting Ex

(
e−rτΛ

`u

)
and where we have supposed that benefits, P , are constant.

As a consequence, AL and NC are also constant. Exact expressions could also be obtained

for the exponential fund model at little cost at the expense of introducing a new parameter.

We restrict ourselves for the remain of this section to the constant case to highlight the main

features of the model. Following Karlin and Taylor (1981, pp. 192–204) or Harrison (1985), it is

possible to characterize the functions R, S and T as solutions of some second order differential

equations when XΛU is a general diffusion process. In our model we deal with a geometric

Brownian motion, see Remark 3.2, allowing us to find the functions in closed form, because

those differential equations are easily transformed into linear equations. We do not go further

into details because they are quite standard1.

R(x) =
1
∆
(
(|u|m2 − |`|m2)|x|m1 + (|`|m1 − |u|m1)|x|m2

)
,

S(x) =
1

2r − k

(
|x|+ 1

∆

(
(|u||`|m2 − |`||u|m2)|x|m1 + (|`||u|m1 − |u||`|m1)|x|m2

))
,

T (x) =
α− 1

(r − k)α

(
ln
(x
`

)
− U(x) ln

(u
`

))
,

with m1,2 the roots (they are always real in our framework) of

2(r − k)2

θ>θ
y2 −

(
(r − k) +

2(r − k)2

θ>θ

)
y − r = 0.

1R satisfies 2(r−k)2

θ>θ
x2R′′ − (r− k)xR′ − rR = 0, with R(`) = R(u) = 1, S satisfies 2(r−k)2

θ>θ
x2S′′ − (r− k)xS′ −

rS + x = 0, with S(`) = S(u) = 0, and T satisfies 2(r−k)2

θ>θ
x2T ′′ − (r − k)xT ′ + 1 = 0, with T (`) = T (u) = 0. It is

well–known that these Euler–type equations are linearized by the change variable x = −et.
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In the above we are assuming that m1,2 6= 1 and that ∆ = |`|m1 |u|m2 − |`|m2 |u|m1 does not

vanish, in order to shorten the cases under study. Note that we have written the corresponding

expressions in terms of the function U and of the parameter α given in Proposition 3.1. Of

course, we are considering k < r.

Total value of contribution with secure management, k′ > r and Λ = 0.

We denote k with k′ to distinguish from the above case. The time of hitting u from x for the

process X0 is t(x) = ln (u/x)/(r − k′) and the accumulated amount of X0 up to time t(x),

x = (u − x)/(r − k′). Denoting Ck′ the total discounted contribution in this case and taking

into account that we suppose NC constant, then

Ck′(x) =
NC
r

(
1−

(u
x

) r
k′−r

)
− x
(
1−

(u
x

) k′
k′−r

)
.

We suppose that `, u and x are proportional to AL , with coefficients between −1 and 0, which

will be specified next.

We intend to address the following question: with the parameters chosen, is it possible to use

a sensible management of the fund by selecting a risky portfolio, such that the total expected

discounted contribution is lesser than with secure management and at the same time reducing

ruin probabilities to a comfortable level for the sponsor? To partially answer this question, some

numerical results are shown under a selected values of the parameters.

Assumptions. The assumptions we consider are the following.

• P = 10 is constant2, the entry age to the fund is a = 25 years, the age of retirement is

d = 65 years, and the accrual function is M(s) = (d− s)/(d− a); M(s) = (s− a)/(d− a);

• the risk free rate of interest is r = 5%;

• risky investment is only in one asset; we consider three cases depending on the Sharpe

ratio: θ = 0.25, 0.30 and 0.35. Typical parameters leading to these values are b = 10%,

and σ = 1/5, σ = 1/6, and σ = 1/7, respectively;
2This implies, join with the following assumption that NC = 4.3233 and AL = 113.5335. There is no a

significative change in the results obtained selecting other values for P .
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• k′ is the inverse of an annuity of m = 20 years calculated at the rate i = er−1, k′ ≈ 8, 11%;

hence we choose an intermediate value for the amortization period m, lesser than the

future working lifetime of the members, indicating that the sponsor is concerned with a

moderately rapid elimination of deficit;

• F = 0.5AL is considered the ruin point by the sponsor, hence ` = −0.5AL , and the initial

value of the fund is F (0) = 0.8AL , or x = −0.2AL ;

• three different values for the target u are considered: F = 0.81AL (u = −0.19AL ),

F = 0.82AL (u = −0.18AL ) and F = 0.84AL (u = −0.16AL ); that is, the sponsor

wishes to maximize the probability of debt reduction in percentages 5%, 10% and 20%,

respectively.

Results3. It is important to highlight that we are supposing that the ruin event is not F = 0,

but when the fund wealth is one half the actuarial liability. So we must be cautionary with the

meaning of “ruin point” in this framework. It can suggest a very dramatic situation for the fund

whereas actually the sponsor still has a margin of safety in the management of fund assets.

The numerical experiments allows us to conclude that the size of θ has a major impact in

both the probability and the expected time of reaching the objectives, and in the total value of

discounted expected contributions. Table 1 shows the dependence with respect to the Sharpe

ratio of the minimum probability of ruin supporting the same total expected contribution in

both types of management. Of course, the sponsor prefers secure management in this case,

because there is no expected gain assuming risks, and a positive probability of ruin remains.

The purpose of Table 1 is to stress the idea that in order to have a real chance in the reduction of

total expected discounted contributions at expense of incurring in an acceptable probability of

ruin, we should be sure that in the financial market there is an asset with a high enough Sharpe

ratio. Higher Sharpe ratios improve the performance of sensible management with respect to
3The following calculations are merely illustrative as the figures appearing have been truncated to the fourth

or to the second decimal place. For the computations, some symbolic and numerical features of DERIVE have

been used.
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secure management, but the concrete size depends on the specific parameters defining the fund

and also on the risk exposure the sponsor is willing to take. Notice also that the higher the

reduction levels in liabilities are pursued, the higher the probability of ruin exposed by the fund.

A 30% reduction (u = −0.14AL ) is also considered in the table to show more clearly this fact.

[INSERT TABLE 1 HERE]

Motivated by the table above, we consider a different range of admissible ruin probabilities for

debt reduction 5% that for 10% and 20%. Tables 2, 3 and 4 carry the following information:

probability of ruin, percentage of reduction in the total expected contribution, value of k, ex-

pected time of reaching the objectives in each case, and ratio of investment in the risky asset

with respect to the unfunded actuarial liability, X. This is provided for the three different

Sharpe ratios selected.

[INSERT TABLES 2, 3 AND 4 HERE]

Comments on the results.

In Table 2, debt reduction of 5% is considered. We observe that selecting k < r the contribution

can be appreciably reduced and at the same time the objective of debt elimination is attained

with a high probability and, of course, the results improve with higher Sharpe ratios and are

worse in the reverse situation. To show an example, we can read in Table 2 that with θ = 0.3 the

expected contribution is roughly one half of the total contribution under inactive management,

that the expected time to eliminate 5% of debt is 0.61 years (resp. 1.65), and the probability of

ruin is of 1, 5%. The reduction in expected contribution is possible thanks to the assumption of

some risk of ruin by the sponsor, which allow a greater flexibility in the fund management. This

is clearly shown in the trend observed for the coefficient of −Λ/XΛ, which is increasing with

the probability of ruin and, as can be seen in Table 3 and 4, decreasing with the debt reduction

target.

More ambitious debt reduction goals imply amortization efforts that, being still lesser than

under secure management, are not so impressive than with a 5% objective. Taking on more risks
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raise the probability of ruin, but it drastically reduces the total contribution effort. When the

objective of debt reduction is greater, 10% and 20%, the investment behavior is more cautious,

as showed by the fact that the amount invested in the risky asset is proportionally lesser. Note

that in order to attain small probabilities of ruin in this case, the expected contribution must

be greater than the contribution in the secure case, hence sensible investment makes sense only

if in fact the sponsor is willing to take some positive risk. The behavior of the expected times of

reaching the objectives follow a similar pattern to the expected contributions, increasing with k

and with debt reduction, and decreasing with the Sharpe ratio.

Note also that in some cases the parameter k becomes negative, indicating that the contribution

is below the normal cost, even when the fund is underfunded.

Our general comments are that the way sensible management compares with secure management

highly depends on the expected return of the portfolio by unit of risk and of the level of reduction

in the unfunded actuarial liability pursued. For reasonable values of Sharpe ratio and moderately

values of reduction debt, risk investment leads to the attainment of the objective with high

probability, a minor expected time and an appreciable reduction in the amortization effort.

3.2 Overfunded region, u > 0

In this case the objective is to maximize the probability of reaching u before some value `, with

0 < ` < u. In contradistinction with the underfunded case, to attain this objective in an optimal

way the parameter k must be chosen greater than r. In fact, when k ≤ r the problem is not a

genuine stochastic problem, because no investment in risky assets assures that the fund increases

to u (k < r) or remains constant (k = r).

Proposition 3.2 Assume k > r and 0 < ` < x < u. The optimal investment strategy ΛU (x)

and the value function are given by (10) and (11), respectively, with the parameter α as was

defined in Proposition 3.1, whenever α 6= 0, and are given by

ΛU (X) = Σ−1(b− r1)X = Σ−1(b− r1)(AL − F )
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and

U(x) =
lnx− ln `
lnu− ln `

=
ln(AL − F )− ln `

lnu− ln `
,

respectively, when α = 0.

Similar remarks apply to this result as those that were done to Proposition 3.1, some of the

differences being now that α < 0 when r < k < r + θ>θ/2, α = 0 when k = r + θ>θ/2 and

0 < α < 1 when k > r+θ>θ/2. In the underfunded case only α > 1 appears, which is equivalent

to k < r.

As in the underfunded case, the total discounted value of the expected contributions under the

optimal solution (which implies sensible management) and under secure management could be

compared. The conclusions would be very similar to that situation, being the more important

one that the expected contribution is lesser in the former case than in the latter, in compensation

for taking on more risk in the management, that is, a positive but small probability of ruin.

4 Minimizing/maximizing the expected discounted penalty/re-

ward

The ruin point is the level of wealth in the fund which is considered by the sponsor as the

minimum floor admissible for continuing the financial operations with a certain guarantee of

attending the present and the future liabilities. As we have shown in the previous section, the

probability of ruin can be kept to a minimum and at the same time to reduce total expected

discounted contributions, by selecting the spread constant k in the amortization scheme below

the risk free interest rate, r. The question we address in this section is how this ruin point

can be made more tangible, in the sense that once the fund has fallen to this undesirable

value, the fund is really penalized —maybe due to the fact that a great injection of capital

is demanded by law, in order to rise cash into the fund account—. Hence we consider now

the existence of a constant penalization measured in monetary units, incurred by the pension

fund if the fund assets go down the ruin value ` defined in the section above. We suppose,
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without lost of generality that the penalization is one unit. The value of the penalization today

is e−µτΛ
` , where µ > 0 is the subjective discount factor of the sponsor valuing the penalty,

hence the objective is to minimize E
(
e−µτΛ

`

)
, the expected discounted disutility when hitting

`. We define G`(x) = infΛ∈Ax Ex

(
e−µτΛ

`

)
, with ` < x, with associated optimal policy ΛG`

, i.e.

ΛG`
(x) = arg infΛ∈Ax Ex

(
e−µτΛ

`

)
. A parallel problem to the just stated is that of maximizing

the expected discounted value of attaining a prescribed higher value of the fund. We are thinking

in the possibility that the sponsor can be rewarded due to a good management, driven the fund

to an upper level, u. The problem becomes now that of maximizing the expected discounted

value of the reward to the present time. So we define Gu(x) = supΛ∈Ax
Ex

(
e−µτΛ

u
)
, x < u, with

associated optimal strategy ΛGu , i.e. ΛGu(x) = arg supΛ∈Ax
Ex

(
e−µτΛ

u
)
. As in the previous

section, when the fund is underfunded and we want to avoid punishment, only the selection

k < r makes interesting the question of how to manage the fund, because k ≥ r guaranties that

full investment in the bond avoids for sure the ruin point. To unify the analysis we consider

only k < r in the overfunded case. In fact, when k > r the interest charged to the surplus X is

negative, see paragraph after equation (9), which is in some sense in contradiction with the aim

of attaining a reward due to high values of X. This causes some problems in the resolution of

this case.

As we can see in the following proposition, the investment pattern associated to minimizing the

expected discounted penalization and to maximizing the expected discounted reward has the

same structure to that of the above section, that is, it is of constant proportionality type with

respect to the liabilities.

Proposition 4.1 The optimal investment strategies and the optimal value functions are, re-

spectively

i) (Underfunded region). Assume ` < x < 0 and k < r. Then the optimal investment policy

is given by

ΛG`
(X) = − 1

q+ − 1
Σ−1(b− r1)X =

1
q+ − 1

Σ−1(b− r1)(AL − F ), (12)
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and the minimum penalization cost by

G`(x) =
(x
`

)q+

=
(
F −AL

`

)q+

, (13)

where

q+ =
1

2(r − k)

(
r − k +

1
2
θ>θ + µ+

√
Φ
)
, (14)

with

Φ =
(
r − k +

1
2
θ>θ + µ

)2

− 4(r − k)µ.

ii) (Overfunded region). Suppose 0 < x < u and k < r. Then the optimal investment strategy

maximizing the premium is given by

ΛGu(X) =
1

1− q−
Σ−1(b− r1)X =

1
1− q−

Σ−1(b− r1)(F −AL ), (15)

and the maximum premium by

Gu(x) =
(x
u

)q−

=
(
F −AL

u

)q−

, (16)

where

q− =
1

2(r − k)

(
r − k +

1
2
θ>θ + µ−

√
Φ
)
. (17)

Remark 4.1 In the case k = r it can be checked, following the proof of Proposition 4.1, that

the optimal investment and the value function are

ΛGu(X) =
1

1− q
Σ−1(b− r1)X =

1
1− q

Σ−1(b− r1)(F −AL ),

Gu(x) =
(x
u

)q
=
(
F −AL

u

)q

,

respectively, where

q =
µ

µ+ θ>θ/2
∈ (0, 1),

being precisely the limits of the expressions (15) and (16) when k goes to r.

Remark 4.2 To determine the regions of borrowing and shortselling in each case, notice that

the assumption k < r imposed in Proposition 4.1 implies 0 < q− < 1 < q+. Suppose first
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that the aim is to minimize the penalization inherent to the drop in fund assets to ` when the

fund is underfunded. Then it is optimal borrowing at rate r to invest in asset i, µi,G`
≥ F ,

if and only if F ≤ ν ′iAL , with ν ′i = eiΣ−1(b − r1)/(eiΣ−1(b − r1) + q+ − 1). In the same

way, it is optimal borrowing to invest in some stock,
∑n

i=1 µi,G`
≥ F , if and only if F ≤ ν ′0AL ,

with ν ′0 = 1>Σ−1(b − r1)/(1>Σ−1(b − r1) + q+ − 1). Suppose now that the objective is to

maximize the expected payoff associated to drive the fund to u in the overfunded region. In this

case the borrowing region is determined as follows. Substituting q+ by q− in the corresponding

expressions, the inequalities affecting ν ′i are reversed and the denominators appearing in the

expressions for ν ′i can be negative, i.e. eiΣ−1(b − r1) ≤ 1− q−. In that case borrowing is not

optimal because µi,Gu ≤ F −AL < F . Finally, in both cases the optimal strategies are positive,

thus shorselling is not optimal.

Remark 4.3 Taking limit as the discount factor µ goes to 0, it is possible to recover from

Proposition 4.1 the solution of the problem of maximizing the probability that the fund assets

reach the level u before than `, explored in the previous section. Substituting the strategy ΛG`
of

(12) into the fund equation (9), we obtain that the process X satisfies the stochastic differential

equation

dXΛG` (t) =
(
r − k +

θ>θ

1− q+

)
XΛG` (t)dt+

1
1− q+

XΛG` (t)θ>dw(t), with 0 ≤ t ≤ τ
ΛG`
` ,

which is a geometric Brownian motion. It is very easy to check

G`(XΛG` (t)) =G`(x) exp
{(

r − k +
θ>θ

1− q+
− θ>θ

2(1− q+)2
)
q+t+

q+

1− q+
θ>w(t)

}
,

for 0 ≤ t ≤ τ
ΛG`
` , and from this we obtain4

Ex

(
τ
ΛG`
`

)
=

ln |`| − ln |x|
r − k + θ>θ

1−q+ − θ>θ
2(1−q+)2

, (18)

depending on µ through q+.

4Notice that (18) could not be obtained from the generating function of τ
ΛG`
` . The property showing that if

ϕ(µ) = E
�
e−µZ

�
, with µ ≥ 0, where Z is a random variable, then ϕ(0) = P(Z < ∞) and −ϕ′(0) = EZ, cannot

be applied here because τ
ΛG`
` depends also on µ.
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When the problem is to maximize rewards, analogous comments apply, but now substituting

adequately q+ by q−, and ` by u, in the corresponding expressions.

Letting the discount factor µ to zero, the root q+ converges to α (this constant was defined in

Proposition 3.1) because k < r, (observe that α, q+ > 1). The root q− converges to 0; and root

q (defined when k = r) converges to 0. These facts imply the following convergences

lim
µ→0

ΛG`
= ΛU , lim

µ→0
G`(x) =

(x
`

)α
, (19)

if k < r; and

lim
µ→0

ΛGu(X) = Σ−1(b− r1)X = Σ−1(b− r1)(F −AL ), lim
µ→0

Gu(x) = 1, (20)

if k ≤ r.

To finish this section, the following proposition shows that, in the overfunded region, the strategy

appearing in (20) solves the problem of minimizing the expected time of reaching u before than

`. So we will consider 0 < ` < x < u. Let Vu(x) = infΛ∈Ax Ex

(
τΛ
u

)
be the value function and

ΛVu(x) = arg infΛ∈Ax Ex

(
τΛ
u

)
the optimal investment.

Proposition 4.2 If 0 < x < u and k ≤ r, then the optimal investment strategy is given by

ΛVu(x) = Σ−1(b− r1)x = Σ−1(b− r1)(F −AL ) (21)

and the value function by

Vu(x) =
lnu− lnx

r − k + 1
2θ
>θ

=
lnu− ln(F −AL )
r − k + 1

2θ
>θ

. (22)

As µ is positive, q+ < α; so the strategy minimizing penalization in the underfunded case

(k < r), involves less risky investment than the policy maximizing the probability of hitting u

before than `, ` < u, that is, ΛG`
< ΛU .

5 Optimal policies under risk of sudden termination

Up to now we are supposing that the pension plan under consideration stands forever, that is,

there is no known, fixed time of termination of the funding process. This is because the plan is of
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aggregated type and the retirement of the participants takes place continuously at different times.

In this way, the plan covers the obligations at all times and this process continues for all the new

entrants in the fund. Consider however, that there is some positive probability of bankruptcy

of the sponsoring firm. We are not concerned with the situation of beneficiaries and insurance

companies, but with the issue of optimal management of the fund in these circumstances until

the time of termination. To model such a possibility, let us consider that the distribution

function of the time T of termination is of exponential form, i.e. P(T ≤ t) ≡ h(t) = 1− e−ρt is

the probability that sudden termination does not occur until time t ≥ 0, where ρ > 0.

Let L be an instantaneous utility function, depending on the process X = F−AL . The objective

of the sponsor will be to maximize (note that we identify the random variable T with their values)

E
(

Ex

∫ T

0
L(X(t)) dt

)
=
∫ ∞

0
Ex

(∫ T

0
L(X(t)) dt

)
h′(T ) dT

= Ex

∫ ∞

0
L(X(t))

(∫ ∞

t
h′(T ) dT

)
dt

= Ex

∫ ∞

0
e−ρtL(X(t)) dt,

where we have used independence between T and w, applied Fubini in the second equality and

integrated by parts in the third5.

The objective functional can be given a different meaning: e−ρt is a factor weighing the instan-

taneous utility at time t. Thus ρ can be seen as a rate of impatience of the controller or as an

actualization rate. In this interpretation, the fund is considered to stay forever.

The objective functional of the sponsor is thus6 Ex

∫∞
0 e−ρtL(X(t)) dt, where the process X(t)

is constrained by (9). Of course, function L must show different properties in the underfunded

and in the overfunded region, in accordance with the priority of the manager in each case. When

F < AL , i.e. x < 0, the sponsor penalizes deviations of the fund with respect to AL . On the

contrary, when F > AL, i.e. x > 0, the sponsor obtains utility from the surplus. As F increases
5This derivation is well–known and it is introduced here only for completeness.
6Notice that the stated problem is not exactly the model in Merton (1971), since that utility depends on the

controlled process X and not on the control variable as in Merton’s model (the consumption process in that case).

Hence the optimality proof needs Proposition 5.1.
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from AL , the contribution rate decreases, making it possible to become negative, meaning, in

this case, that the firm obtains dividends from the fund assets. Therefore an adequate selection

in the underfunded case seems to be the convex function L(X) = |X|γ/γ, with γ > 1, whereas

in the overfunded region we suppose the concave utility specification L(X) = Xγ/γ, with γ < 1

and γ 6= 0, or L(X) = lnX. Let us denote by W the value function associated to the problem.

In the first case the objective is to minimize and in the second to maximize.

Other authors have considered models where the objective is to maximize a terminal utility

depending on the contribution rate instead of the fund and with a final time T previously fixed;

see Boulier et al (1995), Siegmann and Lucas (1999) or Cairns (2000).

For the maximization case, following Fleming and Soner (1993), the HJB equation for the

problem is

−ρV (x) + sup
Λ

{
((r − k)x+ Λ>(b− r1))V ′(x) +

1
2
Λ>ΣΛV ′′(x) + L(x)

}
= 0.

Supposing that V ′′ < 0, the maximizer is again as in (28). Substituting this in the equation

above we have

−ρV (x) + (r − k)xV ′(x)− 1
2
θ>θ

(V ′(x))2

V ′′(x)
+ L(x) = 0. (23)

An analogous equation is obtained for the minimization case, substituting sup by inf.

For the following result, define the constants ξ, η by

ξ ≡ 1

ρ+ θ>θ
2

γ
γ−1 − γ(r − k)

, (24)

η ≡
r − k + θ>θ

2

ρ2
.

Proposition 5.1 The optimal investment strategy and optimal value function are, respectively:

i) If L(X) = |X|γ/γ with γ > 1 or if L(X) = Xγ/γ with γ < 1 and in both cases ξ > 0, then

ΛW (X) = − 1
γ − 1

Σ−1(b− r1)X = − 1
γ − 1

Σ−1(b− r1)(F −AL ), (25)

and the value function is W (x) = ξ|x|γ/γ = ξ|F −AL |γ/γ.
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ii) If L(X) = lnX, then

ΛW (X) = Σ−1(b− r1)X = Σ−1(b− r1)(F −AL ), (26)

and the value function is W (x) = (lnx)/ρ+ η = (ln(F −AL ))/ρ+ η.

Remark 5.1 Note that the optimal policy (26) is also optimal for the problem solved in Propo-

sition 3.2 in the overfunded case with α = 0. On the other hand, if r− θ>θ/(2(γ− 1)) > 0, then

choosing a spread method of contribution with k = r−θ>θ/(2(γ−1)) we have that (25) and (10)

coincide in the underfunded case. Analogous conclusion holds in the overfunded region. In a sim-

ilar way we can compare (25) with (12) and (15). Hence the problem of maximizing/minimizing

the reward/penalty/time to hit a goal and the problem of minimizing the probability of ruin

have the same optimal solution than the problem of maximizing/minimizing the terminal utility

with an adequate selection of the parameter k. Table 5 shows which are the optimal investment

policies in each case, whereas Table 6 compares the size of the respective optimal investments.

In these tables are included other interesting cases.

[INSERT TABLES 5 AND 6 HERE]

6 Conclusions

We have analyzed the management of a pension funding process of an aggregated pension plan

in three different situations, distinguishing between the overfunded and the underfunded cases.

Firstly, we have supposed that the aim of the employer is to maximize the probability of avoiding

a ruin point. In the second place we have minimized the cost of beating a lower barrier and

maximized the prize of reaching a upper bound, and finally, we have considered the maximization

of some utility along an infinite horizon, when taking into account the possibility of exogenous

shocks leading the pension plan to sudden termination.

A key conclusion of the paper is that the optimal investment policies in all cases reported are of

proportional type with respect to the gap between the fund assets and actuarial liability. This is

a direct consequence of the choices of objective functions. It is worth noting that this investment
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behavior is also optimal in the model of Merton of consumption and portfolio choice with i.i.d.

returns and HARA utility. The vector Σ−1(b − r1) appearing as one of the components of

the proportionality vector in the solutions shown in Table 5, is called by Merton the optimal–

growth portfolio strategy. It has the property of maximizing the expected logarithm utility of

terminal wealth and the expected continuously compounded return. Since that the objectives

of the sponsor are related with the growth of fund assets—that turns out to be equivalent of

minimizing the probability of ruin in Section 3—, it is not a surprise that the optimal–growth

portfolio strategy appears as an integral part of the proportional investment strategy.

Proportional investment strategies, independent of the deficit level, leads in Section 3 to the

apparent paradoxical behavior of taking on more risk as the deficit increases. The justification

is that the return obtained with safe investment plus amortization effort are not sufficient to

cover the liabilities—recall that we are supposing k < r—. Hence, it is necessary to invest in

risky assets in the underfunded region in order to obtain higher mean returns, so the uncertain

effects are always present. When the fund is near the ruin point, it becomes optimal to augment

the mean returns of the fund assets, assuming the risk of a higher volatility. The situation is

similar in Proposition 4.1, where due to the proportional pattern in the investment behavior,

investment in equities increases as the deficit or surplus increases.

Other interesting property is that the optimal investment strategy does not depends on the ruin

point ` and the desired level u. For the class of funds described is this paper and with the

objectives proposed, there is no difference in their optimal management, as soon as they only

differ in the ruin level considered. However, the amortization effort k has a major impact, not

only in the optimal investment decisions, but in the probability of ruin, the expected time to

attain the objectives, and the total amount of expected contributions made to the fund.

Further research should be directed to include stochastic benefits as in Josa–Fombellida and

Rincón–Zapatero (2004). In this case there are two sources of uncertainty, the returns of fund

assets and the evolution of benefits. This lead to a more difficult problem where is not possible

to obtain explicit solutions, except in very particular cases. Thus the analysis must be based in

proving existence and uniqueness of solution to the HJB equation from a more theoretical point
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of view. It may be appropriated to study this problem in the framework of the viscosity theory

of PDEs, analyzing the qualitative properties of the optimal solution.
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A Appendix

The survival and growth problems that we consider in this paper are particular cases of the most

general optimal stopping control problem that we present below. Given an investment policy Λ,

we denote by τΛ
z the first hitting time to value z of the process X: τΛ

z = inf{t > 0 : XΛ(t) = z}.

Given `, u, with ` < X(0) = x < u, τΛ
`u is the first escape time from interval (`, u) of the process

X under policy Λ: τΛ
`u = min{τΛ

` , τ
Λ
u }.

For the continuous functions g and h, with g bounded, the nonnegative function λ, and given `,

u, the objective functional is

J (x,Λ) = Ex

(∫ τΛ
`u

0
g
(
XΛ(t)

)
e−

R t
0 λ(XΛ(s))dsdt+ h

(
XΛ

(
τΛ
`u

))
e−

R τΛ
`u

0 λ(XΛ(s))ds

)
,

the value function is V̂ (x) = supΛ∈Ax
{J(x,Λ) : s.t. (9)} and the optimal investment policy is

ΛbV (x) = arg supΛ∈Ax
{J(x,Λ) : s.t. (9)}, where Ax = {Λ : J(x,Λ) <∞} is the set of adapted

and admissible controls given X(0) = x.

The Hamilton–Jacobi–Bellman (HJB henceforth) equation associated to this problem is (see

Krylov (1980)):

sup
Λ

{(
(r − k)x+ Λ>(b− r1)

)
V ′(x) +

1
2
Λ>ΣΛV ′′(x)−λ(x)V (x) + g(x)

}
= 0, (27)

subject to the boundary conditions V (`) = h(`) and V (u) = h(u). If V is sufficiently regular

and strictly concave, the argument maximizing (27) is

Λ̂(V ′(x), V ′′(x)) = −Σ−1(b− r1)
V ′(x)
V ′′(x)

. (28)

By substituting (28) in (27), we obtain

(r − k)xV ′(x)− 1
2
θ>θ

(V ′(x))2

V ′′(x)
−λ(x)V (x) + g(x) = 0, ` < x < u, (29)

with

V (`) = h(`) and V (u) = h(u). (30)

The following result, that is proved in more general versions in Browne (1997, 1999), shows that

under some conditions the value function is characterized as the solution of (29)–(30).
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Theorem A.1 Suppose that V : (`, u) −→ (−∞,∞) of class C2, increasing and concave, that

is to say, V ′ > 0 and V ′′ < 0, is the solution of the nonlinear Dirichlet equation (29)–(30) and

satisfies the conditions:

(i) (V ′)2/V ′′ is bounded in (`, u),

(ii) either there exists an integrable random variable Y such that V (XΛ(t)) ≥ Y, for all t ≥ 0

and for all Λ ∈ Ax, or

E
∫ t

0
(XΛ(s)V ′(XΛ(s)))2σΛ>(s)Λ(s)σ>ds <∞,

for every t ≥ 0 and for every Λ ∈ Ax,

(iii) V ′/V ′′ is locally Lipschitz continuous.

Then, V is the optimal value function, i.e. V̂ = V , and moreover the vector of optimal invest-

ment amounts is

ΛV (x) = −Σ−1(b− r1)
V ′(x)
V ′′(x)

, ` < x < u. (31)

B Appendix

Proof of Proposition 3.1. Applying Theorem A.1 with g = λ = 0, h(l) = 0 and h(u) = 1,

the optimal value function U must be the increasing and concave solution of

(r − k)xU ′(x)− 1
2
θ>θ

(U ′(x))2

U ′′(x)
= 0, l < x < u,

with U(l) = 0 and U(u) = 1. The general solution of this ordinary differential equation is

U(x) = a1 +a2|x|α. The parameter α turns out to be α = 1+θ>θ/(2(r−k)) > 1. The boundary

conditions determine the constants a1 and a2, and therefore the optimal value function is given

by (11). It is immediate to check that U ′ > 0 and U ′′ < 0 and that the remaining hypotheses in

Theorem A.1 hold. For values of k greater than r the solution obtained is not concave, hence

the HJB equation is not maximized. Thus the problem as it stands, that is, without constraints

onto the decision variables, has no solution. �
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Proof of Proposition 3.2. As in the proof on Proposition 3.1 above, the general solution

when α 6= 0 is U(x) = a1 + a2x
α. In this case α < 1 because k > r. The frontier conditions

allows me to obtain a1 and a2, in particular a2 = 1/(uα − `α). Function U is increasing and

concave because a2α > 0. As in the previous Proposition it is immediate that (10) and (11) are

the vector of optimal controls and the value function. For k < r, U is not concave, hence in

this case the HJB equation is not maximized and thus the problem has no solution. In the case

α = 0 the general solution is U(x) = a0
1 + a0

2 lnx, with constants a0
1 and a0

2 determined by the

boundary conditions. It turns out that this solution is increasing and concave. �

Proof of Proposition 4.1.

i) Let us suppose ` < x < 0 and k < r. Theorem A.1 is valid for minimization if we change

sup by inf in the corresponding HJB equation and if the solution V is strictly convex and

decreasing. Function G` must be a strictly convex and decreasing solution of

(r − k)V ′(x)− 1
2
θ>θ

(V ′(x))2

V ′′(x)
− µV (x) = 0, ` < x < 0, (32)

with G`(`) = 1 and ΛG`
is obtained from (31).

This partial differential equation admits the solution V (x) = p(−x)q, ` < x < 0, where q

is a root of the quadratic equation

(r − k)q2 − (r − k + θ>θ/2 + µ)q + µ = 0 (33)

and p is a constant to be determined from the boundary condition, that is to say p = |`|−q.

The two solutions (14) and (17) are obtained from (33). Because k < r, it is not difficult to

prove that the discriminant Φ of the equation (33) is positive and that 0 < q− < 1 < q+.

On the other hand, G` is decreasing (G′` < 0) and convex (G′′` < 0) if and only if q > 1. As

this condition is verified by q+ only, the value function and the optimal control are given

by (13) and (12), respectively.

Furthermore, it can be proved that the hypotheses of Theorem A.1 are satisfied.
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ii) When 0 < x < u and k < r then 0 < q− < 1 < q+. The function Gu must be an strictly

concave and increasing solution of (32), with Gu(u) = 1 and ΛGu can be obtained from

(31). Now Gu(x) = p xq, 0 < x < u, is simultaneously increasing and concave if and only

if 0 < q < 1. It is verified by q− only, so the value function and the optimal control are

given by (16) and (15), respectively. The remainder hypotheses of Theorem A.1 are easily

verified. �

Proof of Proposition 4.2. Theorem A.1 is valid for minimization if we change sup by inf in

the corresponding HJB equation and if the solution V is strictly convex and decreasing. Suppose

0 < x < u. It is easy to check that Vu as given in (22) is a strictly convex and decreasing solution

of

(r − k)xV ′(x)− 1
2
θ>θ

(V ′(x))2

V ′′(x)
+ 1 = 0, 0 < x < u,

with Vu(u) = 0. By (31), ΛVu is the vector appearing in (21). Furthermore, it can be proved

that the hypotheses of Theorem A.1 are satisfied. �

Proof of Proposition 5.1. It is immediate to check that W is a solution of the HJB equation

(23) in each case (note that in the underfunded case the aim is to minimize instead of maximize;

Hence in this region sup must be changed by inf in the HJB equation (23)). Furthermore, W

is strictly concave (convex) in the overfunded (underfunded) region. It remains to prove the

transversality condition

lim
t→∞

Exe
−ρtW (XΛW (t)) = 0 (34)

(see Fleming and Soner (1993, Theorem 9.1)).

i) Equation (9) is now

dXΛW (t) =
(
r − k − 1

γ − 1
θ>θ

)
XΛW (t)dt− 1

γ − 1
θ>XΛW (t) dw(t).

Applying Itô’s Lemma to f(t) = e−ρtW (XΛW (t)) we find

df(t) =
(
−ρ+ (r − k)γ − θ>θ

2
γ

γ − 1

)
f(t) dt−

(
γ

γ − 1
θ>
)
f(t) dw(t).
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Taking expectations, and because the stochastic integral
∫ t
0 f(s) dw(s) is a martingale, we

have

Exe
−ρtW (XΛW (t)) = Exf(t)

=
ξ

γ
|x|γe−(ρ−(r−k)γ+(θ>θγ)/(2(γ−1)))t

=
ξ

γ
|x|γe−t/ξ → 0 as t→∞,

provided ξ as given in (24) is positive.

ii) It is completely similar to the case above. Now Ex lnXΛW (t) = lnx + (r − k + θ>θ
2 )t,

since Y = lnXΛW satisfies Y (t) = lnx+ (r− k+ θ>θ
2 )t+ θ>w(t), hence the transversality

condition (34) is fulfilled. �

30



References

Boulier, J.F., Trussant, E., Florens, D., 1995. A dynamic model for pension fund management.

Proceedings of the 5th AFIR International Colloquium 1, 361–384.

Bowers, N.L., Hickman, J.C., Nesbitt, C.J., 1979. The dynamics of pension funding: Contribu-

tion theory. Transactions of the Society of Actuaries 31, 93–119.

Browne, S., 1997. Survival and growth with a fixed liability: Optimal portfolios in continuous

time. Mathematics of Operations Research 22, 468–493.

Browne, S., 1998. The return on investment from proportional portfolio strategies. Advances in

Applied Probability 30, 216–238.

Browne, S., 1999. Beating a moving target: Optimal portfolio strategies for outperforming a

stochastic benchmark. Finance and Stochastics 3, 275–294.

Cairns, A.J.G., 2000. Some notes on the dynamics and optimal control of stochastic pension

fund models in continuous time. Astin Bulletin 30, 19–55.

Cairns, A.J.G., Parker, G., 1997. Stochastic pension fund modelling. Insurance: Mathematics

and Economics 21, 43–79.

Fleming, W.H., Soner, H.M., 1993. Controlled Markov Processes and Viscosity Solutions.

Springer Verlag, New York.

Haberman, S., Butt, Z., Megaloudi, C., 2000. Contribution and solvency risk in a defined benefit

pension scheme. Insurance: Mathematics and Economics 27, 237–259.

Haberman, S., Sung, J.H., 1994. Dynamics approaches to pension funding. Insurance: Mathe-

matics and Economics 15, 151–162.

Harrison, J.M., 1985. Brownian motion and stochastic flow systems. Wiley & Sons, New York.

Karlin, S., Taylor, H.M., 1981. A Second Course on Stochastic Processes. Academic Press, New

York.

Krylov, N.V., 1980. Controlled Diffusion Processes. Springer, New York.

Josa–Fombellida, R., Rincón–Zapatero, J.P., 2001. Minimization of risks in pension funding

by means of contribution and portfolio selection. Insurance: Mathematics and Economics 29,

35–45.

31



Josa–Fombellida, R., Rincón–Zapatero, J.P., 2004. Optimal risk management in defined benefit

stochastic pension funds. Insurance: Mathematics and Economics 34, 489–503.

Merton, R.C., 1971. Optimal consumption and portfolio rules in a continuous–time model.

Journal of Economic Theory 3, 373–413.

O’Brien, T., 1987. A two parameter family of pension contribution functions and stochastic

optimization. Insurance: Mathematics and Economics 6, 129–134.

Pestien, V.C., Sudderth, W.D. 1985. Continuous–time red and black: how to control a diffusion

to a goal. Mathematics of Operations Research 10, 599–611.

Siegmann, A.H., Lucas, A., 1999. Continuous–time dynamic programming for ALM with risk–

averse loss functions. Proceedings of the 9th AFIR International Colloquium 2, 183–193.

32



Table 1

Impact of θ in the minimum probability of ruin equating

expected contributions in both type of managementa.

Probability of ruin, %

Sharpe Debt reduction

ratio 5% 10% 20% 30%

0.20 1,42 2,70 4,92 6,76

0.25 1,11 2,11 3,80 5,16

0.30 0,85 1,61 2,86 3,85

0.35 0,64 1,20 2,11 2,80

0.40 0,47 0,87 1,51 1,97

aParameter values: ` = −0.5AL , x = −0.2AL , r = 5%, P = 10.



T
ab

le
2

P
er

fo
rm

an
ce

of
se

ns
ib

le
w

it
h

re
sp

ec
t

to
se

cu
re

m
an

ag
em

en
t

w
it

h
de

bt
re

du
ct

io
n

5%
(t

=
1.

65
)b

.

Sh
ar

pe
ra

ti
o

P
ro

ba
bi

lit
y

θ
=

0.
25

θ
=

0.
30

θ
=

0.
35

of
ru

in
%

EC
k
(z

)

C
k
′ (

z
)

%
k

E
x
τ
Λ `u

-Λ
/X

Λ
EC

k
(z

)

C
k
′ (

z
)

%
k

E
x
τ
Λ `u

-Λ
/X

Λ
EC

k
(z

)

C
k
′ (

z
)

%
k

E
x
τ
Λ `u

-Λ
/X

Λ

2,
5

14
,9

9
−

0.
01

76
0.

13
2.

70
53

12
,4

0
−

0.
04

74
0.

08
3.

89
57

10
,8

2
−

0.
08

26
0.

06
5.

30
25

2,
0

36
,2

9
0.

01
31

0.
40

1.
47

80
28

,8
5

−
0.

00
32

0.
28

2.
12

83
24

,2
2

−
0.

02
24

0.
20

2.
89

69

1,
5

67
,5

8
0.

02
62

0.
88

0.
94

89
53

,0
3

0.
01

58
0.

61
1.

36
63

43
,7

0
0.

00
35

0.
45

1.
85

98

1,
0

>
10

0
87

,3
4

0.
02

69
1.

19
0.

92
43

71
,5

0
0.

01
85

0.
87

1.
25

80

0,
5

>
10

0
>

10
0

>
10

0

b
P
ar

am
et

er
va

lu
es

:
`

=
−

0.
5A

L
,
x

=
−

0.
2A

L
,
u

=
−

0.
19

A
L

,
θ

=
0.

25
(σ

=
1/

5)
,
θ

=
0.

3
(σ

=
1/

6)
,
θ

=
0.

35
(σ

=
1/

7)
,
r

=
5%

,
P

=
10

.



T
ab

le
3

P
er

fo
rm

an
ce

of
se

ns
ib

le
w

it
h

re
sp

ec
t

to
se

cu
re

m
an

ag
em

en
t

w
it

h
de

bt
re

du
ct

io
n

10
%

(t
=

3.
39

)c
.

Sh
ar

pe
ra

ti
o

P
ro

ba
bi

lit
y

θ
=

0.
25

θ
=

0.
30

θ
=

0.
35

of
ru

in
%

EC
k
(z

)

C
k
′ (

z
)

%
k

E
x
τ
Λ `u

-Λ
/X

Λ
EC

k
(z

)

C
k
′ (

z
)

%
k

E
x
τ
Λ `u

-Λ
/X

Λ
EC

k
(z

)

C
k
′ (

z
)

%
k

E
x
τ
Λ `u

-Λ
/X

Λ

5
12

,4
5

−
0.

02
83

0.
19

3.
13

03
10

,4
1

−
0.

06
27

0.
13

4.
50

77
9,

16
−

0.
10

34
0.

10
6.

13
54

4
32

,9
4

0.
00

98
0.

70
1.

60
64

26
,3

1
−

0.
00

78
0.

49
2.

31
33

22
,1

8
−

0.
02

87
0.

36
3.

14
86

3
63

,3
8

0.
02

48
1.

65
1.

00
62

49
,9

7
0.

01
38

1.
14

1.
44

90
41

,3
2

0.
00

07
0.

84
1.

97
22

2
>

10
0

83
,2

8
0.

02
58

2.
28

0.
96

75
68

,5
3

0.
01

70
1.

68
1.

31
69

1
>

10
0

>
10

0
>

10
0

c
P
ar

am
et

er
va

lu
es

:
`

=
−

0.
5A

L
,
x

=
−

0.
2A

L
,
u

=
−

0.
18

A
L

,
θ

=
0.

25
(σ

=
1/

5)
,
θ

=
0.

3
(σ

=
1/

6)
,
θ

=
0.

35
(σ

=
1/

7)
,
r

=
5%

,
P

=
10

.



T
ab

le
4

P
er

fo
rm

an
ce

of
se

ns
ib

le
w

it
h

re
sp

ec
t

to
se

cu
re

m
an

ag
em

en
t

w
it

h
de

bt
re

du
ct

io
n

20
%

(t
=

7.
17

)d
.

Sh
ar

pe
ra

ti
o

P
ro

ba
bi

lit
y

θ
=

0.
25

θ
=

0.
30

θ
=

0.
35

of
ru

in
%

EC
k
(z

)

C
k
′ (

z
)

%
k

E
x
τ
Λ `u

-Λ
/X

Λ
EC

k
(z

)

C
k
′ (

z
)

%
k

E
x
τ
Λ `u

-Λ
/
X

Λ
EC

k
(z

)

C
k
′ (

z
)

%
k

E
x
τ
Λ `u

-Λ
/X

Λ

5
74

,4
7

0.
02

73
4.

24
0.

90
87

59
,3

1
0.

01
73

2.
94

1.
30

85
49

,2
1

0.
00

55
2.

16
1.

78
10

4
95

,4
3

0.
03

16
6.

07
0.

73
58

76
,5

1
0.

02
35

4.
22

1.
05

95
63

,5
2

0.
01

39
3.

10
1.

44
21

3
>

10
0

96
,9

2
0.

02
86

5.
98

0.
85

65
80

,7
6

0.
02

09
4.

39
1.

16
58

2
>

10
0

>
10

0
>

10
0

1
>

10
0

>
10

0
>

10
0

d
P
ar

am
et

er
va

lu
es

:
`

=
−

0.
5A

L
,
x

=
−

0.
2A

L
,
u

=
−

0.
16

A
L

,
θ

=
0.

25
(σ

=
1/

5)
,
θ

=
0.

3
(σ

=
1/

6)
,
θ

=
0.

35
(σ

=
1/

7)
,
r

=
5%

,
P

=
10

.



Table 5

Optimal investment decisions in the different cases studied.

Minimizing probability of ruin ΛU (X) = −2(r−k)
θ>θ

Σ−1(b− r1)X

Minimizing penalty ΛG`
(X) = − 1

q+−1
Σ−1(b− r1)X

Maximizing reward ΛGu(X) = − 1
q−−1

Σ−1(b− r1)X

Minimizing time ΛVu(X) = Σ−1(b− r1)X

Uncertain time horizon ΛW (X) = − 1
γ−1Σ−1(b− r1)X



Table 6

Comparison of the optimal investment decisions.

Underfunded case Overfunded case

ΛU > ΛW ⇔ k > r − θ>θ
2(γ−1) ΛU > ΛW ⇔ k > r − θ>θ

2(γ−1)

ΛU = ΛW ⇔ k = r − θ>θ
2(γ−1) ΛU = ΛW ⇔ k = r − θ>θ

2(γ−1)

ΛG`
> ΛW ⇔ q+ > γ ΛGu > ΛW ⇔ q−, q > γ

ΛG`
= ΛW ⇔ q+ = γ ΛGu = ΛW ⇔ q−, q = γ

ΛW > ΛVu ⇔ γ > 0

ΛW > ΛVu ⇔ γ = 0


