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1 Introduction

The dynamically optimal management of defined benefit pension plans has considerable eco-

nomic interest, due to the great importance that the world of pensions provision has acquired

in financial markets.

In this paper we analyze the optimal contribution rate and asset allocation decisions for

a manager of a defined benefit pension plan who wishes to keep the fund as close as possible

to prescribed targets. These targets are fixed by actuarial cost methods, allowing an ideal

contribution rate –the normal cost– and an ideal fund level –the actuarial liability– to be defined.

These ideal levels guarantee the benefits promised to members incorporated to the pension plan

over time. However, the existence of uncertainty in some elements of the plan or in the rate of

return of the assets of the fund can cause the evolution of the plan to be quite different from

the initially designed valuation. Hence the contribution rate must be the normal cost modified

by a suitable supplementary cost reflecting the disturbances. The supplementary cost is chosen

by the promoter with the aim of bringing the expected value of the unfunded actuarial liability

to zero. The instruments used by the manager to reach the objectives are the contribution rate

and investment earnings.

Along the lines of Haberman (1993), Haberman and Sung (1994), Haberman (1997) and

Josa–Fombellida and Rincón–Zapatero (2001), we suppose that the aim of the controller is to

minimize a combination of the contribution rate risk and the solvency risk. The former represents

the size of deviation of contributions from the normal cost and is related with the stability of the

plan. The latter risk is an indicator of the plan’s safety, measuring deviations of the fund from

the actuarial liability. The model is considered on an unbounded horizon and with a positive

discount rate, meaning that the sponsor is more worried about the short term than with the

long run behavior of the fund.

In Josa–Fombellida and Rincón–Zapatero (2001) the authors considered the case of a con-

stant value for the benefits, in a context closely related with the framework pioneered by Merton

(1971) for optimal consumption and portfolio selection. That paper found that the optimal be-

havior of the controller leads to a spread method of funding if the technical rate of actualization

of the actuarial liability equals the risk–free rate of return. With a spread method the supplemen-

tary cost is proportional to the unfunded actuarial liability, in such a way that the corrections

made in the rate of contribution to the normal cost are small when the fund is close to the tar-

get. Furthermore, it enjoys good stability properties. This is why spread methods have became

popular with professionals and institutional agents.

Haberman and Sung (1994) considered a similar model in discrete time, on a finite horizon

both in deterministic and stochastic frameworks. These authors do not contemplate investment
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as an instrumental variable, but all the fund assets are invested at a random rate of return.

Another difference with our paper is that they consider constant benefits, whereas in our case

we allow stochastic benefits.

Other related papers are O’Brien (1987), Boulier et al (1995), Cairns (1995, 1996, 2000),

Owadally and Haberman (1999), Vigna and Haberman (2001), Taylor (2002) and Chang et al

(2003). Our paper extends the previous analysis incorporating a source of uncertainty in the

benefit outgo, supposing that the benefits are given by a geometric Brownian motion. O’Brien

(1987) analyzes a stochastic optimal control problem, where the uncertainty in the benefits is

modelled in a quite different way. This author makes a linear approximation to the exponential

fund model, see Bowers et al (1986), to retain analytical tractability of the problem. However,

no investment decisions are available for the manager, who wishes to maintain a constant fund

ratio (with respect to the actuarial liability), and penalizes fluctuations of the contribution rate

from zero.

Our paper contemplates three different situations which are studied regarding the investment

decisions taken by the sponsoring employer: (i) In the first, the fund is invested at a constant

rate of interest; (ii) the promoter invests in a portfolio with n risky assets and a risk–free se-

curity; (iii) finally, it is supposed that the rate of return is stochastic. Note that the benefits

are a non–tradable process, hence the market is incomplete and, furthermore, we also consider

the existence of correlation between the sources of uncertainty in the benefits and in the asset

returns. However, the consideration of the benefits as geometric Brownian motion is fundamen-

tal to our approach. The problem is solved under particular assumptions –depending on the

scenario– concerning the technical rate of actualization and the evolution of the liabilities. These

hypotheses are motivated by our intention to show that spread methods lead to a minimization

of risk in pension funding, even in a stochastic environment.

An outline of the paper and a summary of the main results are given next. Section 2

provides the definitions of the main elements incorporated in a defined benefit pension plan of

an employment system. The actuarial functions, necessary for the valuation of the plan are also

introduced, and we prove that when the benefits are given by a geometric Brownian motion, the

related actuarial functions are processes of the same type.

Section 3 considers that the fund is invested at a constant and deterministic rate of interest.

We find that if the rate of return of the bond is chosen as the valuation rate, then the optimal

management of the fund is a spread method. Section 4 presents a model with n + 1 financial

assets, where one of them is a bond. The controller can buy and sell the assets without limi-

tations, with the possibility of selling short and borrowing at the riskless rate of interest. The

source of uncertainty of the benefits is correlated with that of the prices of the risky assets. This
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fact means, that in order to find a spread method of funding, the rate of return of the bond plus

a correction term due to the existence of correlation must be chosen as the valuation rate. It

can also be seen that in case ii) the fund stabilizes faster than in case i), and with a lesser total

contribution.

In Section 5, we suppose that the fund is totally invested in a single risky asset. This poses

an interesting problem, because it is not clear how the technical rate of actualization could be

chosen to obtain a spread method.

Section 6 is devoted to establishing some concluding remarks. All the proofs are in Appendix

A.

2 The pension model and preliminary results

The pension model under consideration refers to an aggregate pension fund whose funding

scheme is of defined benefit type. In a defined benefit plan the benefits are established in

advance by the manager. Strictly speaking, this can only be done in a deterministic setting. If

there is uncertainty in some of the elements of the plan, as for example, in its population, in the

salary growth rate or in the appreciation of pension retirements, then the best the sponsor can

do is to model the uncertainty. The contributions are instruments used to maintain the fund

within adequate levels.

In this paper the actuarial valuation to estimate the main components of the plan are done

at each instant of time. We denote F (t) as the value of the assets of the fund at time t; C(t)

is the contribution rate of the sponsor needed to accrue the amount of the defined benefits

at the moment of retirement; the defined benefits are denoted by P (t); the normal cost for

all participants by NC (t); the actuarial liability by AL (t); the unfunded actuarial liability by

UAL(t) = AL (t) − F (t) and the supplementary contribution rate amortizing UAL(t) at time t,

by SC (t) = C(t)− NC (t). The valuation of the plan is done with a constant rate of interest δ,

called the technical rate of interest.

In Josa–Fombellida and Rincón–Zapatero (2001), the values of P , NC and AL were consid-

ered constants. A more realistic assumption is to suppose the existence of disturbances that

affect the evolution of the benefits and hence the evolution of the normal cost and the actuarial

liability. To model this possibility, we consider a probability space (Ω,F ,P), where F = {Ft}t≥0

is a complete and right continuous filtration generated by the one–dimensional Brownian motion

{B(t)}t≥0 and P is a probability measure on Ω. One of the more general hypotheses about the

behavior of P is to suppose that P is a path–continuous scalar Itô process defined on (Ω,F ,P)
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as

P (t) = P0 +
∫ t

0
µ(P (s), s) ds +

∫ t

0
η(P (s), s) dB(s), t ≥ 0,

where P0 represents the initial liabilities. This formulation allows us to consider that the pop-

ulation of the plan is subject to disturbances that cannot be completely anticipated by the

sponsor.

Following Bowers et al (1986), we introduce the hypothesis that the benefits accumulated

by the worker throughout his or her life are distributed according to the distribution function

M , with an associated density function m. For age x, the value M(x) represents the percentage

of the actuarial value of the future benefits accumulated until x. The support of m is the fixed

interval [a, d], hence m(x) = 0, if x ≤ a or x ≥ d. We are supposing that all the participants

enter the plan at age a, whereas the common age of retirement is d.

Along the lines of the deterministic case, the stochastic actuarial liability and the stochastic

normal cost are defined as follows:

AL (t) =
∫ d

a
e−δ(d−x) M(x)E (P (t + d− x)|Ft) dx,

NC (t) =
∫ d

a
e−δ(d−x) m(x)E (P (t + d− x)|Ft) dx,

for every t ≥ 0, where E(·|Ft) denotes conditional expectation with respect to the filtration as-

sociated to the standard Brownian motion {B(t)}t≥0. Thus, to compute the actuarial functions

at time t, the manager makes use of the information available up to that time, in terms of the

conditional expectation. The information in resumed in the corresponding element of the filtra-

tion, Ft. Since P is a diffusion process, it satisfies the Markov property (see Øksendal (1998)),

hence conditional expectation with respect to the filtration equals conditional expectation with

respect the current values of P at time t. It is plausible to think that in the task of computing

the ideal values of the fund, the information given by the evolution of the random source will

be used.

For analytical tractability, we will need a more concrete specification for P . A typical way

of modelling P in the certain case is to postulate exponential growth, see Bowers et al (1986).

The stochastic counterpart is to consider the benefits outgo as a geometric Brownian motion.

This is the content of the following hypothesis.

(A) The benefits P satisfies

dP (t) = µP (t)dt + ηP (t)dB(t), t ≥ 0,

where µ ∈ R and η ∈ R+. The initial condition P (0) = P0 is a random variable that represents

the initial liabilities.
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Hence we are supposing that the benefits increase or decrease on average at a constant

exponential rate. The behavior of the actuarial functions AL and NC are then given in the

following proposition.

Proposition 2.1 Under assumption (A) there are constants ψAL and ψNC such that AL =

ψALP and NC = ψNCP . Furthermore, ψNC = 1 + (µ − δ)ψAL and the identity (δ − µ)AL (t) +

NC (t)− P (t) = 0 holds for every t ≥ 0.

From the proposition we deduce that

dAL (t) = µAL (t) dt + ηAL (t) dB(t), AL (0) = ψALP0 (1)

and also dAL (t) = (δAL (t) + NC (t) − P (t)) dt + ηAL (t) dB(t). This is an analogous equation

to that appearing in the deterministic case, see Bowers et al (1986).

3 Optimal funding with safe investment

A first approximation to the management of a defined benefit pension plan is to consider that

the whole wealth of the fund is invested at a safe and constant rate of return. This case is

studied here, where the unique source of uncertainty comes from the benefits outgo. Although

the results could be obtained from the next section, we analyze this case separately to isolate

more clearly the effects of investment decisions and to facilitate comparison.

We consider a bond S0 verifying

dS0(t) = rS0(t) dt, S0(0) = 1,

where r > 0 is the constant rate of interest.

The evolution of the fund is given by the ordinary differential equation

dF (t) = (rF (t) + C(t)− P (t)) dt, t ≥ 0, (2)

with initial condition F (0) = F0 > 0.

In the control problem considered here, the only instrument of the manager is the rate of

contribution C, that we suppose is a measurable adapted process with respect to {Ft} satisfying
∫ ∞

0
|C(s)| ds < ∞ a.s. (3)

We will use Proposition 2.1 and the definition of the supplementary cost to eliminate the

processes P and NC in the control problem. The equality (δ − µ)AL + NC − P = 0 allows us

to write (2) as

dF (t) = (rF (t) + SC (t) + NC (t)− P (t)) dt =
(
rF (t) + SC (t) + (µ− δ)AL (t)

)
dt, t ≥ 0. (4)
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Let us now turn to the preferences of the controller. We assume that he or she wishes to

minimize a convex combination of the contribution rate risk and the solvency risk. Thus, the

objective functional to be minimized over the class of admissible controls AF0,AL0 , is given by

J((F0,AL 0);SC ) = EF0,AL0

∫ ∞

0
e−ρt

(
κSC 2(t) + (1− κ)(AL (t)− F (t))2

)
dt. (5)

Note that we choose SC as the control variable instead of C, leading to an equivalent control

problem. Here, AF0,AL0 is the set of measurable processes SC = C − NC where C satisfies (3)

and where F and AL satisfy (4) and (1), respectively. In the above, EF0,AL0 denotes conditional

expectation with respect to the initial conditions (F0,AL 0).

The parameter κ, 0 < κ ≤ 1, is a weighting factor reflecting the relative importance for the

employer of the two different types of risks. Note that the specification (5) implies that the

fund manager assigns the same importance to over and under deviations of the fund’s assets and

contributions from their respective targets. The recent paper by Chang et al (2003) considers the

square of ratio deviation of the variables, plus linear terms in the performance criterion function,

in such a way that under–funding and over–contributing is more penalized than over–funding

and under–contributing.

An important issue is how to choose the technical rate of actualization δ. Given that there

is a riskless rate of interest r in the market, a rather natural selection is δ = r. This is better

understood if a hypothetical situation is considered where the sponsor borrows money to satisfy

his or her liabilities. The rate of borrowing is r, so the “correct”valuation of the debt is δ = r.

Hence we impose the following hypothesis.

(B) The technical rate of actualization equals the riskless rate of interest, δ = r.

It turns out that, in this case, the structure of the problem becomes quite simple and the

optimal solution involves a spread method of funding. Of course, the problem could be easily

solved for a different value of δ, but in this case the optimal contribution rate is not proportional

to the unfunded actuarial liability, UAL = AL − F .

The dynamic programming approach is used to solve the problem. To make the process

work, some properties of the value function need to be established. In particular, we prove that

it is a solution to the Hamilton–Jacobi–Bellman equation (HJB henceforth). The value function

is defined as

V̂ (F,AL ) = min
SC∈AF,AL

{
J((F,AL );SC ) : s.t. (4), (1)

}
.

Since the problem is autonomous and the horizon unbounded, we may suppose that V̂ is

time independent. It is clear that the value function so defined is non–negative and strictly

convex.
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The connection between value functions in optimal control theory (deterministic or stochas-

tic) and optimal feedback controls is accomplished by the HJB equation, see Fleming and Soner

(1993). We thus have the following result.

Theorem 3.1 Suppose that assumptions (A) and (B) hold. If the inequality

2µ + η2 < ρ (6)

is satisfied, then the optimal contribution rate is given by

C∗ = NC +
αFF

κ
UAL, (7)

where αFF is the unique positive solution to the equation

α2
FF + κ(ρ− 2r)αFF − κ(1− κ) = 0. (8)

Remark 3.1 From (7) in Theorem 3.1, the optimal supplementary cost is proportional to the

unfunded actuarial liability: SC ∗ = (αFF /κ)UAL∗. The form of the solution suggests that the

optimal behavior of the manager in a defined benefit pension plan, when he or she wishes to

minimize the solvency and contribution risks, corresponds to what is called in the literature the

spread method of funding. This fact was first pointed out by Haberman and Sung (1994) in a

discrete time environment and corroborated in Josa–Fombellida and Rincón–Zapatero (2001) in

continuous time. The spread method appears because of assumption (B).

Remark 3.2 From (24) in the Appendix and Arnold (1974, p. 139), we obtain

EF0,AL0F
∗(t)− EF0,AL0AL (t) = (F0 −AL 0)e(r−αFF

κ
)t.

Therefore, if the inequality

αFF > κr (9)

holds, then the difference between the expected value of the fund and the expected value of the

actuarial liability converges to zero and from (7), the difference between the expected value of

the contribution rate and the expected value of the normal cost tends to zero.

The constant αFF /κ depends on κ, r and ρ. In fact, if r ≥ ρ condition (9) holds. When

r < ρ, (9) implies that

κ <
1

1 + r(ρ− r)
, (10)

where we have used (8). This inequality places a constraint between the impatience rate of the

controller –whenever it is greater than the rate of return of the bond– and the weight given to

the objectives. It is clear that if ρ increases, that is to say, the promoter is more concerned

with the near future than with the long term, then the weight of the solvency risk term has to

diminish to stabilize the plan. The contribution rate thus increases with ρ.
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4 Optimal funding with portfolio selection

In this section the management of the pension fund is modelled in the environment established

in the above sections, but the possibility for the manager to invest in risky assets is introduced.

The sponsoring employer manages the funding process by making a portfolio choice of n risky

assets S1(t), . . . , Sn(t) and a bond S0(t), 0 ≤ t < ∞, with dynamics given by the equations

dS0(t) = rS0(t) dt, S0(0) = 1 (11)

dSi(t) = Si(t)
(
bidt +

n∑

j=1

σijdWj(t)
)
, Si(0) = si, 1 ≤ i ≤ n. (12)

Here bi and σij , 1 ≤ i, j ≤ n are positive constants. The vector (W0(t),W1(t), . . . ,Wn(t))> is

an (n + 1)–dimensional standard Brownian motion defined on the probability space (Ω,G,P),
where {Gt} denotes the completion of the filter σ{(W0(s),W1(s), . . . , Wn(s))> : 0 ≤ s ≤ t}.

We assume that bi > r, for each i = 1, ..., n. Given that the benefits P are conditioned

for the increase in salary of the sponsoring employees, we suppose the existence of correlation

qi ∈ [−1, 1] between the Brownians B and Wi, for i = 1, . . . , n, which can be explained by

the effects of salary on inflation and the effects of the latter on the asset prices. This means

that E(B(t)Wi(s)) = qi min(t, s) for i = 1, . . . , n and B(t) =
√

1− q>q W0(t) + q>W (t), where

W (t) = (W1(t),W2(t), . . . , Wn(t))> and q = (q1, q2, . . . , qn)>. When q>q 6= 1 the risk in the

benefits outgo cannot be eliminated by trading in the financial market.

The matrix (σij) is denoted by σ and the market price of risk, σ−1(b − r1), by θ, where

b = (b1, . . . , bn)> and 1 is a (column) vector of 1’s. We will suppose that the symmetric matrix

Σ = σσ> is positive definite. λi(t) denotes the quantity of the fund invested by the promoter in

the asset i, for 0 ≤ i ≤ n. The quantity F −∑n
i=1 λi is invested in the risk–free bond. There are

no bounds on these variables. A negative value of λi means that the promoter is selling short

the corresponding stock. If
∑n

i=1 λi is greater than the value of the fund, then the manager is

borrowing money at rate r to invest in the stocks. λ(t) denotes (λ1(t), . . . , λn(t))>.

A portfolio process or trading strategy λ(t) is an Rn–measurable process adapted to {Gt}
such that ∫ ∞

0
λ
>(s)λ(s) ds < ∞ a.s. (13)

We suppose that changes in the fund level derive solely from changes in the asset prices, the

interest of the bond, the contribution rate and the benefits. Consequently:

dF (t) =
n∑

i=1

λi(t)
dSi(t)
Si(t)

+
(
F (t)−

n∑

i=1

λi(t)
)dS0(t)

S0(t)
+

(
C(t)− P (t)

)
dt. (14)
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By (11), (12) and (14) we obtain that the fund amount satisfies the following stochastic differ-

ential equation:

dF (t) =
(

rF (t) +
n∑

i=1

λi(t)(bi − r) + C(t)− P (t)
)

dt +
n∑

i=1

n∑

j=1

λi(t)σij dWj(t),

with initial condition F (0) = F0. Using Proposition 2.1, this can be rewritten as

dF (t) =
(

rF (t) +
n∑

i=1

λi(t)(bi − r) + SC (t) + (µ− δ)AL (t)
)

dt +
n∑

i=1

n∑

j=1

λi(t)σij dWj(t). (15)

It is important to remark that the model describes an incomplete market, because the

stochastic benefits P cannot be traded in the security market and therefore the manager cannot

hedge the inherent risk.

We shall now proceed to establish the problem of the funding process management when

the possibility of diversification in the investment is considered. As in Section 3, the problem is

stated in terms of the fund wealth and the actuarial liability as the state variables. Naturally, we

now add new control variables, given by the vector of investment decisions, to the supplementary

cost.

The elements in the class of admissible controls, AF0,AL0 , are Markovian stationary pairs

(SC , λ) adapted to the filter {Gt}t≥0, satisfying (3) and (13), such that (1) and (15) admit a

unique solution, which is Gt–measurable with continuous paths.

To solve the problem stated above the same steps are followed as in the section above. The

value function is defined as

V̂ (F,AL ) = min
(SC,λ)∈AF,AL

{
J((F,AL ); (SC , λ)) : s.t. (15), (1)

}
.

Our aim is to prove that even in this framework, the solution of the problem is again, as in

Section 3, a spread method of funding. For this to be the case, the following assumption needs

to be imposed on the actualization rate.

(B’) The technical rate of actualization satisfies δ = r + ηq>θ.

In contradistinction to (B), the risk – free rate r is now modified to get rid of the sources

of uncertainty due to the investment in risky assets that, we suppose, are correlated with the

Brownian motion driving the benefits process. In fact, if there is no correlation, or if η = 0,

then δ = r. Here are some arguments justifying the hypothesis, using asset valuation tech-

niques, which are based on the certainty equivalent growth rate approach. We mainly follow

Constantinides (1978) and Shimko (1992, pp. 43–47). To simplify, consider only one worker of

age x = x0 ∈ [a, d]. The promise to pay P (t) to the worker at the time of retirement x = d is
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valued by the sponsor by

e−δ(d−x0)E(P (t + d− x0)|Ft) = e(µ−δ)(d−x0)P (t),

as proven in Proposition 2.1. Now, for this valuation to be “correct”, that is to say, to be a

risk–neutral valuation of the liability, it must be the case that

µ− δ = −(r − α∗), (16)

where α∗ = µ − ηq>θ is known as the certainty equivalent growth rate of P . α∗ allows the

growth rate of the underlying process P to be adjusted and the expected value in a risk–neutral

market to be calculated. From (16) we obtain our assumption (B’), that is, δ = r + ηq>θ.

Theorem 4.1 Suppose that assumptions (A) and (B’) hold. If the inequality

2µ + η2 < ρ (17)

is satisfied, then the optimal rate of contribution and optimal investment in the risky assets are

given by

C∗ = NC +
βFF

κ
UAL, (18)

λ ∗ = Σ−1(b− r1)UAL + ησ−>qAL , (19)

respectively, where βFF is the unique positive solution to the equation

β2
FF + κ(ρ− 2r + θ

>
θ)βFF − κ(1− κ) = 0. (20)

Remark 4.1 Note that (18) implies, as in Section 3, that the supplementary cost is proportional

to the unfunded actuarial liability. However, the constant of proportionality is now higher than

in the case where the sponsor invests only in the bond. This can be checked computing the

solutions of the respective equations defining αFF and βFF . The explanation becomes from

the existence of uncertainty in the financial assets. The disturbances in the fund due to the

evolution of the prices of the risky assets makes it more difficult to keep the solvency risk at

zero, causing a more severe adjustment in the contribution rate.

With reference to the optimal investment decisions, (19), we can distinguish two terms. The

first is again proportional to UAL, but the second is a correction term, depending on the risk

parameters of the model and on AL . The constant of proportionality in the first term is the so

called optimal–growth portfolio strategy.

An interesting feature of the model is that the manager takes a greater risk when the wealth

of the fund is far below the actuarial liability than when it is closer. This behavior, which seems
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to be counterintuitive, was analyzed in Cairns (2000). However, there is a rational explanation.

The sponsor is concerned with the stabilization of the funding process around the targets,

because of their aim to reduce the risks inherent to the funding process. Given that the mean

returns of the risky assets are greater than the rate of return of the bond, the sponsor is willing

to take a greater risk to guide the fund towards the target. Please also note that, even in the

case where the fund exactly matches AL at some time, the investment in the risky assets is

not null, as is the case when there is no uncertainty in the benefits, see Josa–Fombellida and

Rincón–Zapatero (2001), or if there is no correlation.

Remark 4.2 From (27) in the Appendix and Arnold (1974, p. 139), we have

EF0,AL0F
∗(t)− EF0,AL0AL (t) = (F0 −AL 0)e(r−θ

>
θ−βFF

κ
)t.

Therefore, if the inequality

βFF > κ(r − θ
>
θ), (21)

holds, then the difference between the expected value of the optimal fund and the expected actu-

arial liability converges in the long term to zero. A similar comment applies to the contribution

and the normal cost.

Inequality (21) is automatically fulfilled if r ≥ ρ + θ
>
θ. However, when r < ρ + θ

>
θ, it

reduces to

κ <
1

1 + r(ρ + θ
>
θ − r)

.

As can be seen, this is more restrictive than when the manager of the fund only invests in fixed

rent, because θ
>
θ > 0. Compare this with expression (10).

Remark 4.3 In the optimal solution (19), the manager borrows money at rate r to invest in

risky asset i–that is to say, λi > F ∗–when the level of the fund is below kiAL , where the constant

ki is defined as

ki =
eiΣ−1(b− r1) + ηeiσ

−>q

1 + eiΣ−1(b− r1)
, ei = (0, . . . ,

i)

1, 0, . . . , 0),

for all i = 1, 2, . . . , n. The manager takes a short position in asset i–that is to say, λ∗i < 0–when

the fund is above the value k′iAL , where

k′i =
eiΣ−1(b− r1) + ηeiσ

−>q

eiΣ−1(b− r1)
> ki.

12



We can summarize the above in the following behavior for the optimal investment

λ
∗ ≤ 0 ⇔ F ∗ ≥ k′iAL ,

λ∗i ≥ F ⇔ 0 < F ∗ ≤ kiAL ,

0 < λ∗i < F ⇔ kiAL < F ∗ < k′iAL .

That is, when the fund is over k′iAL , the manager is selling short in asset i. When the fund

is below kiAL , the manager is borrowing money at rate r. Observe that even in the case of

over–funding, F ∗ > AL , the optimal decision may be to borrow money to invest in stocks. For

this to be the case, it is necessary the existence of positive correlation. To simplify matters,

assume that there is only one stock and that qη/σ > 1. Then k1 > 1 and the inequality

AL < F ∗ < k1AL could be plausible, indicating that the manager has to borrow money to

invest in risky assets even in the case of over–funding. Of course, this can only be due to a high

value of the instantaneous volatility of P with respect to that of the stock, and to the existence

of a positive correlation.

We may wonder why the manager is going to invest in risky assets if he or she can attain

the same objectives of minimizing risks by investing in fixed rent and if the region of stability

in the former case is smaller than in the latter, as shown in Remark 3.2 and Remark 4.2. The

reasons for doing so are contained in the two following results, where we suppose that (B) holds

in the fixed rent case and that (B’) holds in the other case.

Corollary 4.1 If (A) holds, then the rate of convergence of the expected value of the fund to

the expected value of actuarial liability in the long run is greater when the manager invests both

in the bond and risky assets than when he or she invests only in fixed rent.

Hence, on average, the stabilization of the plan is faster with the selection of an adequate

portfolio involving risky assets and a constant bond, in contrast to the case of investing only at

a fixed and deterministic rate of interest.

Another interesting question is to compare the total averaged contribution rate made by the

sponsoring employees through time, under the two types of management.

Corollary 4.2 If (A), (9) and (21) hold, then, when F0 < AL 0 the total expected value of the

optimal contribution rate is less when the manager invests in both the bond and risky assets than

when he or she invests only in fixed rent.

13



5 Optimal pension funding with stochastic rate of return

In this section we investigate what the optimal behavior of the pension manager is when there is

no risk–free asset. As noted in Cairns (2000), some pension funds only use cash for short–term

liquidity and not as an asset to invest in the long run. In general, funds use government bonds

with fixed interest as low risk assets, but they are not risk–free. In this situation, we can ask

ourselves what the technical rate of actualization is that is chosen by the actuaries, leading to a

spread method of funding.

To simplify the model, let us consider that the whole wealth of the fund is invested in a

single risky asset. This case cannot be handled from results established in Section 4, but the

model is as specified in that section, without the bond S0 and with n = 1. Therefore, we now

suppose that there is only one risky asset whose price is a geometric Brownian motion,

dS(t) = bS(t) dt + σS(t) dW1(t),

where b > 0 and σ > 0. The symbol W1 denotes a standard Brownian motion. Remember,

however, that B is the standard Brownian motion intervening in the evolution of the benefits. We

suppose that W1 and B are correlated, as in Section 4. That is to say, E(B(t)W1(s)) = q min(t, s),

with −1 ≤ q ≤ 1. Hence we can write B =
√

1− q2W0 + qW1, where (W0, W1) is a standard

Brownian motion defined on the corresponding probability space.

The behavior of the wealth of the fund is given by the stochastic differential equation

dF (t) = F (t)
dS(t)
S(t)

+
(
C(t)− P (t)

)
dt,

or

dF (t) = (bF (t) + C(t)− P (t)) dt + σF (t) dW1(t), F (0) = F0 ≥ 0.

As we already know, assumption (A) allows us to eliminate P and NC from the formulation

dF (t) = (bF (t) + SC (t) + (µ− δ)AL (t)) dt + σF (t) dW1(t). (22)

The payoff is again given by the quadratic expression (5). Note that the fund is completely

invested in the risky asset, so the only control variable is the supplementary cost.

The value function of the stochastic problem now becomes

V̂ (F,AL ) = min
SC∈AF,AL

{
J((F,AL );SC) : s.t. (1), (22)

}
,

where the class of admissible controls, AF,AL, is defined as in the previous sections.

Since our main objective is to show that an adequate selection of δ leads to a spread method

of funding, the following hypothesis is imposed.

14



(B”) The technical rate of valuation satisfies δ = b + σ2 − ηqσ > 0.

Theorem 5.1 If assumptions (A) and (B”) hold and if the inequality 2µ + η2 < ρ is satisfied,

then the optimal rate of contribution is given by

C∗(F,AL ) = NC +
γFF

κ
UAL,

where γFF is the unique positive solution to the equation

γ2
FF + κ(ρ− 2b− σ2)γFF − κ(1− κ) = 0.

Remark 5.1 As in the above sections, it is possible to obtain

EF0,AL0F (t)− a3EF0,AL0AL (t) = (F0 − a3AL 0)e(b− γ
FF
κ

)t,

with a3 = (γFF + κ(µ− δ))/(γFF + κ(µ− b)), and therefore γFF > κb implies

lim
t→∞

(
EF0,AL0F (t)− a3EF0,AL0AL (t)

)
= 0.

With a zero risk–free rate of interest, the expected value of the optimal fund minus the actuarial

liability converges, in the long run to zero if, and only if, the constant a3 = 1, that is to say,

σ = ηq. This is an important difference with respect to the case where there is a constant rate

of return, where the expected value of the fund in the long run exactly matches the expected

value of the actuarial liability. The fact that in general it is not possible to attain the expected

value of the liabilities could be a consequence of assumption (B”) and the use of a spread

method of funding. Some other selection of δ –maybe a non–constant one– could lead to an

exact stabilization at the expense of a more complicated method of funding.

6 Conclusions

We have studied the problem of pension funding in a defined benefit pension plan from the

perspective of a manager who wishes to keep the fund to prescribed targets with the aim of

minimizing the solvency risk and the contribution rate risk. The liabilities outgo is subject to

disturbances influencing the evolution of the pension management. We study three scenarios

and determine the optimal behavior of the controller for each one. We find that it is always

possible to choose –in a rather natural way– the technical rate of actualization such that the

supplementary cost is proportional to the unfunded actuarial liability.

The paper shows that the expected value of the fund converges faster in the long run to the

expected value of the actuarial liability when the agent diversifies her or his investment. The
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investment in high return, high risk assets decreases linearly as the fund increase towards the

ideal value, but even when F exactly matches AL , the optimal investment in risky assets is not

null. This behavior implies taking more and more risks when the level of the fund is low, but it

demands selling the risky assets short when the fund is operating with a large surplus.

An interesting question is to consider that the rate of return of the bond is not constant,

but that it follows some stochastic process, as proposed in Vasicek (1977) or in Cox et al (1985).

This is the approach taken in the recent papers of Boulier et al (2001) and Deelstra et al (2003)

in defined contribution pension funds.
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A Appendix

Proof of Proposition 2.1: If Assumption (A) holds, then the benefits are given by

P (t) = P0e
(µ− η2

2
)t+ηB(t), t ≥ 0.

Therefore, for every x ∈ [a, d] and t ≥ 0 the following holds

E(P (t + d− x)|Ft) = P0E(e(µ− η2

2
)(t+d−x)+ηB(t+d−x)|Ft)

= P0e
µ(t+d−x)E(e−

η2

2
(t+d−x)+ηB(t+d−x)|Ft)

= P0e
µ(t+d−x)e−

η2

2
t+ηB(t)

= P0e
µ(d−x)e(µ− η2

2
)t+ηB(t)

= eµ(d−x)P (t).

The first equality holds because P0 is F0–measurable and the third because e−
η2

2
s+ηB(s) is an

Ft–martingale for s ≥ t.

Therefore, defining

ψAL =
∫ d

a
e(µ−δ)(d−x)M(x) ds, ψNC =

∫ d

a
e(µ−δ)(d−x)m(x) ds,

the statement of the proposition follows. Finally, the relationship between ψAL and ψNC is

obtained integrating by parts in the second integral and taking into account the properties of

M and that M ′ = m. ¤

Proof of Theorem 3.1. For the problem of optimal pension funding established in Section

3, the HJB equation becomes:

ρV = min
SC

{
(rF + SC + (µ− δ)AL )VF + µAL VAL +

η2

2
AL 2VAL,AL + κSC 2 + (1− κ)(AL − F )2

}
.

(23)

If there is a smooth solution V of this equation, strictly convex with respect to (F,AL ), then

the minimizer value of the supplementary cost rate is given by

ŜC (VF ) = −VF

2κ
,

that is, Ĉ(VF ) = NC − VF /2κ. We first substitute this value in (23) and then we try a solution

of the form

V (F,AL ) = αFF F 2 + αAL,ALAL 2 + αF,ALFAL .

17



The following three equations are obtained for the above coefficients

α2
FF + κ(ρ− 2r)αFF − κ(1− κ) = 0,

−αF,ALαFF + κ(µ + r − ρ)αF,AL + 2κ(µ− δ)αFF − 2κ(1− κ) = 0,

4κ(ρ− 2µ− η2)αAL,AL + α2
F,AL − 4κ(µ− δ)αF,AL − 4κ(1− κ) = 0.

The first equation is precisely (8), which admits a positive solution. Assumption (B) implies

the equality −2αFF = αF,AL and then, the second equation coincides exactly with the first one.

Substituting these expressions in the third equation and subtracting this from the first one,

αAL,AL = ((ρ− 2µ)/(ρ− 2µ− η2))αFF ≥ αFF , assuring that V is non–negative.

According to Fleming and Soner (1993), to prove that the solution we have found of equation

(23) is in fact the value function of the problem, it is sufficient to check that the transversality

condition

lim
t→∞ e−ρtEF0,AL0V (F ∗(t),AL (t)) = 0

holds, where F ∗ is the optimal fund wealth

dF ∗(t) =
((

r − αFF

κ

)
F ∗(t) +

(αFF

κ
+ µ− r

)
AL (t)

)
dt, (24)

obtained after substitution in (4) of the expression for SC ∗ given in (18). Since V is a homo-

geneous quadratic polynomial in F and AL , it is necessary to calculate the expected values of

(F ∗)2, F ∗AL and AL 2 conditioned to a given pair (F0,AL 0). Since AL is a geometric Brownian

motion, EF0,AL0AL 2(t) = AL 2
0e

(2µ+η2)t, hence limt→∞ e−ρtEF0,AL0AL 2(t) = 0 if and only if (6)

holds.

Following Arnold (1974, p. 140), the functions defined by g(t) = EF0,AL0(F
∗AL )(t) and

h(t) = EF0,AL0(F
∗)2(t) satisfy the linear differential equations

g′(t) =
(
r − αFF

κ
+ µ

)
g(t) +

(
− r +

αFF

κ
+ µ

)
ϕ(t),

h′(t) = 2
(
r − αFF

κ

)
h(t) + 2

(αFF

κ
+ µ− r

)
g(t),

with initial conditions g(0) = F0AL 0 and h(0) = F 2
0 , respectively and where ϕ(t) = EF0,AL0AL 2(t).

Therefore

g(t) = (F0 − a1AL 0)AL 0e
(r−αFF

κ
+µ)t + a1ϕ(t),

with a1 = (αFF + κ(µ− r))/(αFF + κ(µ− r + η2)). Assuming inequality (6) we have

limt→∞ e−ρtEF0,AL0(F
∗AL )(t) = 0 if and only if r−αFF /κ+µ < ρ hold. To prove this, note that

the definition of αFF as the unique positive solution of (8) implies r − αFF /κ < ρ/2. Taking

into account (6) we obtain r − αFF /κ + µ ≤ r − αFF /κ + µ + η2/2 < ρ. On the other hand,

h(t) = (F 2
0 − 2F0AL 0 + (2a1 − a1a2)AL 2

0)e
2(r−αFF

κ
)t + 2g(t)− (2a1 − a1a2)ϕ(t),
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with a2 = (αFF + κ(µ− r))/(αFF + κ(µ− r + η2/2)). Hence limt→∞ e−ρth(t) = 0 if and only if

(6) and 2r − 2αFF /κ < ρ hold. Again the latter inequality is obtained from (8) and (6). This

ends the proof. ¤

Proof of Theorem 4.1. The HJB equation is now

ρV = min
SC,λ

{(
rF + λ

>(b− r1) + SC + (µ− δ)AL
)
VF + µAL VAL +

1
2
λ
>ΣλVFF

+
1
2
η2AL 2VAL,AL + ηAL λ

>
σqVF,AL + κSC 2 + (1− κ)(F −AL )2

}
. (25)

If there is a smooth solution V of the equation (25), strictly convex, then the maximizers

values of the contribution rate and the investment rates are given by

ŜC (VF ) = −VF

2κ
, (26)

λ̂(VF , VFF , VAL,AL) = −Σ−1(b− r1)
VF

VFF
− ηAL σ−>q

VF,AL

VFF
,

respectively. The structure of the equation obtained once we have substituted this values for

SC and λ in (25), suggests a quadratic homogeneous solution

V (F,AL ) = βFF F 2 + βAL,ALAL 2 + βF,ALFAL .

Imposing this solution the following set of three equations is obtained for the coefficients

β2
FF + κ(ρ + θ

>
θ − 2r)βFF − κ(1− κ) = 0,

−βF,ALβFF + κ(µ + r − ρ− θ
>
θ − ηq>θ)βF,AL + 2κ(µ− δ)βFF − 2κ(1− κ) = 0,

4κ(ρ− 2µ− η2)βAL,ALβFF + βFF β2
F,AL − 4κ(µ− δ)βF,ALβFF

+κ(η2q>q + 2ηq>θ + θ
>
θ)β2

F,AL − 4κ(1− κ)βFF = 0.

Although it would be possible to solve the above equations with full generality, we wish to

determine values of the parameters of the problem leading to a spread method of funding.

A view to the optimal contribution rate helps us to find how to choose the technical rate of

actualization δ. From (26),

SC = − 1
2κ

(2βFF F + βF,ALAL ),

hence the supplementary cost is proportional to the unfunded actuarial liability, if and only if,

βF,AL = −2βFF . But then, the first and second equations can have a solution, if and only if,
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δ = r + ηq>θ. Substituting these expressions in the third equation and subtracting from the

first one,

βAL,AL =
ρ− 2µ− η2q>q

ρ− 2µ− η2
βFF ≥ βFF ,

assuring the non–negativity of V .

As in the proof of Theorem 3.1, we proceed by showing that the transversality condition

holds. The reasonings are very similar, the only change being the dynamics of the optimal fund,

F ∗,

dF ∗(t) =
((

r − θ
>
θ − βFF

κ

)
F ∗(t) +

(− r + θ
>
θ +

βFF

κ
+ µ

)
AL (t)

)
dt

+
(− θ

>
F ∗(t) + (θ> + ηq>)AL (t)

)
dW (t), (27)

It is easy to show that

EF0,AL0(F
∗AL )(t) = (F0 − a1AL 0)AL 0e

(r−θ
>

θ−βFF
κ

+µ−ηq>θ)t + a1ϕ(t),

where a1 is a constant whose expression is not important for our purposes and where ϕ(t) =

EF0,AL0AL 2(t). Hence limt→∞ e−ρtEF0,AL0(F
∗AL )(t) = 0, if and only if, both (17) and the

inequality r − θ
>
θ − βFF /κ + µ − ηq>θ < ρ simultaneously hold. The latter condition follows

from (17) and, by the definition of βFF , is the positive solution of (20). To see this, in the first

place we observe that

−ηq>θ ≤ η1>θ =
1
2

(
θ
>
θ + η2 − (θ − η1)>(θ − η1)

)
≤ θ

>
θ

2
+

η2

2

because −1 ≤ qi ≤ 1. Now (20) implies r − θ
>
θ/2− βFF /κ < ρ/2. These inequalities and (17)

justify the claim. On the other hand,

EF0,AL0(F
∗)2(t) =

(
F 2

0 − 2F0AL 0 + (2a1 − a1a2 − a3)AL 2
0

)
e2(r−βFF

κ
− θ

>
θ

2
)t

+ 2EF0,AL0(F
∗AL )(t)− (2a1 − a1a2 − a3)ϕ(t),

where a2 and a3 are constants. The arguments leading to limt→∞ e−ρtEF0,AL0(F
∗)2(t) = 0 under

the hypotheses of the theorem are quite similar to that shown above. ¤

Proof of Corollary 4.1. With the explicit expressions of αFF and βFF , it is easy to verify

that the rate of convergence in the first case, |r − θ
>
θ − βFF

κ |, is greater than in the second,

which is given by |r − αFF
κ |. ¤
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Proof of Corollary 4.2. Let us call case 1 the situation where there is no diversification in

the investment and case 2 the contrary. Let Ci be the total expected value of the contribution

rate in case i, i = 1, 2. Taking into account the expressions for the expected value of the

unfunded actuarial liability given in Remark 3.2 and Remark 4.2, we have

C1 − C2 =
UAL0

κ

∫ ∞

0

(
αFF e(r−αFF

κ
)s − βFF e(r−βFF

κ
−θ

>
θ)s

)
ds

=
κUAL0

(κr − αFF )(κ(r − θ
>
θ)− βFF )

(r(βFF − αFF ) + αFF θ
>
θ),

which is positive by the assumptions made on the parameters. ¤

Proof of Theorem 5.1. The proof is quite similar to that of Theorem 3.1 and Theorem

4.1, so it is omitted. ¤
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