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Abstract This paper analyzes a non-cooperative and symmetric dynamic
game where players have free access to a productive asset whose evolution is
a diffusion process with Brownian uncertainty. A Euler-Lagrange equation is
found and used to provide necessary and sufficient conditions for the existence
and uniqueness of a smooth Markov Perfect Nash Equilibrium. The Euler-
Lagrange equation also provides a stochastic Keynes-Ramsey rule, which has
the form of a forward-backward stochastic differential equation. It is used to
study the properties of the equilibrium and to make some comparative statics
exercises.
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1 Introduction

The purpose of this paper is twofold. On the one hand, we present a method to
study stochastic differential games which is reminiscent of the Euler-Lagrange
equations (EL henceforth) of the Calculus of Variations problem. On the other
hand, we study with this approach a differential game where N identical agents
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compete on consumption of a productive asset, proving the existence and
the uniqueness of symmetric equilibrium. We also analyze some of its main
properties. The model we study is also important in the single-player case,
as the game reduces to the one-sector stochastic growth model analyzed in
Bourguignon (1974) and Merton (1975). Despite its simplified nature, this
model is fundamental to understand the dynamics of consumption and capital
formation in a one-sector economy where labor supply is affected by an additive
noise. Moreover, in the two-person case, the model is a stochastic version of
the differential game of capitalism introduced by Lancaster (1973), but where
the production factors are fully employed, as in Shimomura (1991).

EL equations are one of the more useful tools to study dynamic optimiza-
tion problems. Introduced in the Calculus of Variations for the first time,
EL equations have become a cornerstone in dynamic economic analysis. They
provide a first order optimality condition for interior solutions of dynamic
problems, avoiding the use of the value function. The value function is char-
acterized by the Hamilton-Jacobi Bellman equation (HJB henceforth). HJB
equations provide a general characterization of optimality, in the sense that
they do not need interiority of the equilibrium to hold1. Once the value func-
tions are known, the Markov Perfect Nash Equilibrium (MPNE henceforth)
is recovered from the HJB equation as the fixed point of the best response
mappings in the Hamiltonian game2. It is worth noting that the resolution of
the EL equations provides the solution directly, with no need to compute the
value function. In fact, the value function can be found once the EL equations
are solved, as we will show below.

What we propose in this paper is a general method for obtaining EL equa-
tions in a class of stochastic differential games, in which the MPNE is interior,
and the uncertainty, which is modeled as a standard Brownian motion, is in-
dependent of the strategies of the players. This is the most serious limitation
of the method developed in the paper. Nevertheless, many interesting eco-
nomic models other than those from finance, present this feature, as games
of Cournot competition with additive noise in demand, games of dynamic
provision of public goods, advertising games, or the noncooperative game of
exploitation of a productive asset that we study here.

The idea of obtaining the EL equations in a differential game to determine
the MPNE can be traced back to Case (1974), where this author studies a
deterministic differential game of Cournot competition. To find the solution,
a system of differential equations that characterizes the Nash equilibrium is
found. This corresponds to what we call in our paper EL equations. Tsutsui
and Mino (1990) also uses the EL equation to find infinitely many discontinu-
ous MPNE in an oligopolistic differential game. Further concrete applications
of the use of the EL equations system in differential game theory can be found

1 EL equations can also be formulated in the general case by introducing multipliers and
inequalities instead of equalities, although obviously in this case they lose much of their
direct applicability.

2 Of course, this program succeeds in continuous time under some technical conditions
guaranteeing the existence of solutions of the corresponding evolution equations.
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in Shimomura (1991), Dockner and Sorger (1996) and Sorger (1998), all of
them in the deterministic counterpart of the model we study in this paper. In
Rincón-Zapatero et al. (1998) and Rincón-Zapatero (2004), this approach has
been made systematic. These two papers also provide sufficient conditions of
optimality which are independent of the value function. An application to a
general model of exploitation of a non renewable resource in a finite horizon
is given. In Martin-Herrán and Rincón-Zapatero (2005), the EL equations are
used to identify games of fishery where the MPNE is Pareto optimal. The
subsequent paper Josa-Fombellida and Rincón-Zapatero (2007) focuses on a
stochastic control problem with Brownian uncertainty, where the players’ de-
cisions cannot affect the size of the uncertainty3. The present paper extends
this methodology to the game framework. It is worth commenting the recent
paper Dockner and Wagener (2014), where a similar approach is used for de-
terministic games, but based on a differential equation satisfied by the costate
variable in feedback form.

It is well known that the question of existence of equilibria in stochastic
differential games is not satisfactorily addressed by the theory and, in partic-
ular, the development of this issue is well behind the corresponding theory in
continuous stochastic games with simultaneous moves and discrete time. Amir
(1996a) shows, using Topkin’s Theorem and supermodularity, the existence
and uniqueness of equilibria in non-symmetric stochastic games of capital ac-
cumulation with a convex transition technology. The result is applied to a
model of altruistic growth in Amir (1996b). In this framework, Nowak (2006)
dispenses the supermodularity condition on the utility function and Balbus et
al. (2014) extends these results to allow for more general spaces of strategies,
providing constructive methods to find the equilibrium. All these papers use
a powerful idea in Amir (1996a, 1997), of considering convex combinations of
transition probabilities. This method of averaging regularizes the best response
mapping (or correspondence), enabling the introduction of more regular strat-
egy spaces than those needed in the deterministic counterpart, see Sundaram
(1989). In this way, the Schauder-Tikhonov fixed point theorem can be invoked
to prove existence of equilibrium in the class of Lipschitz functions. A similar
phenomenon happens in continuous time. The consideration of a continuous
Brownian motion as the source of uncertainty has the effect of regularizing the
problem, so that an smooth equilibrium arises (in the symmetric case). This
effect is well known in the theory of partial differential equations (PDEs hence-
forth): addition of a term involving second derivatives to a first order equation
(this corresponds to a deterministic problem), leads to higher regularity of the
solutions.

3 EL equations were found following the stochastic maximum principle conditions, which
is a more general way than that used here, based on the value function; the second approach
has the advantage of simplicity. In Josa-Fombellida and Rincón-Zapatero (2010) an EL
equation of a Mayer problem, where the diffusion coefficient depends on the control, has
been obtained and analyzed. It turns out that the EL equation in this case is much more
complex.
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Our results of existence and uniqueness are based on classical theorems on
PDEs that cannot be applied directly, but have to be adapted to cover the
specificities of the economic model. What we do is to apply those theorems
on bounded subdomains, providing uniform lower and upper bounds on the
solutions. After this, the global solution is obtained after passing to the limit.
What is new in our use of the classical theorems is: (1) the transformation of
the equation by means of an auxiliary function that gives the aforementioned
bounds and (2) to obtain these bounds for minimal and maximal solutions
by using the maximum principle for parabolic PDEs and Daskin’s Theorem.
To get sharp bounds of the solution is essential to prove that the solution of
the PDE is also a MPNE, as well as to show the convergence of the finite
horizon MPNE to the infinite horizon one. Contrary to the infinite horizon
case, the finite horizon PDE is a well defined Cauchy problem, thus the solution
could be computed with standard PDE algorithms, providing a method to get
approximations to the infinite horizon equilibrium.

The exploitation of resources under noncooperative management have re-
ceived much attention in the literature. The recent survey of Van Long (2011)
provides a modern and exhaustive account. Origins of the literature can be
attached to the seminal contribution of Levhari and Mirman (1980), where
a discrete time version of the game is studied. They find an explicit solution
of the equilibrium when the players have logarithm utilities. The equilibrium
leads to an inefficient allocation of resources since, as a consequence of the
noncooperative character of the game, the resource is overexploited. Further
studies in the field are Clemhout and Wan (1985), Sundaram (1989), Benhabib
and Radner (1992), Dutta and Sundaram (1993a,b), Kamihigashi (2006), Mi-
tra and Roy (2006), Dockner and Sorger (1996) and Sorger (1998), among
others. Of special relevance to us are the two latter papers. Both show that
with an infinite horizon, infinitely many subgame perfect equilibria of the
symmetric game exist. All of them are discontinuous with respect to the asset
stock level. The reason is the assumption taken with respect to the elasticity
of the marginal utility, which says that it is greater –Sorger (1998)– or equal
–Dockner and Sorger (1996)– than the ratio N/(N−1), where N is the number
of players4. The willingness of the players to exchange consumption between
time periods strengthens the fight for the resource and, as we prove, it makes
the consumption rate jump to infinite, no matter the resource suffers stochas-
tic fluctuations. To avoid this problem, the aforementioned papers impose an
exogenous upper bound on the consumption rate. We consider here just the
opposite assumption, that is, that the willingness to exchange consumption
across time is strictly less than N/(N − 1).

As in most of the previous literature, we focus on the symmetric game
and the symmetric Nash equilibrium. Another feature of our study is that we
analyze mainly games with a finite horizon, allowing for rather general bequest
functions at the final time. Then we show how the finite horizon equilibrium
approaches the infinite horizon one as the horizon tends to infinite for an ample

4 Note that in particular the one-player game never fulfills these assumption.
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class of bequest functions. Finite horizon games serve to model problems where
access to the fishing pool is valid only for a fixed period of time; after the time
expires, the bequest function of each player could represent some tax that the
owner of the resource imposes on the players for the use of the resource over
the agreed period of time.

We prove the existence and uniqueness of smooth MPNE for the finite
horizon game, under quite general hypotheses, allowing for the unboundedness
of the functions intervening in the definition of the problem, as well as non
Lipschitzianity of the utility function. This is necessary to cover the more
popular cases, including those that allow an analytical resolution. However,
no specific functional form is postulated in our results.

A consequence of the EL equation is a stochastic Keynes-Ramsey rule (KR
rule henceforth) that governs the equilibrium. Due to the stochastic nature of
the problem, the rule consists of a pair of forward-backward stochastic dif-
ferential equations. In the single-player deterministic case, the rule was first
established for the optimal growth model analyzed in Ramsey (1928). It char-
acterizes the rate of change of players’ optimal consumption in response to
changes in the interest rate and in the elasticity of intertemporal substitution.
In the stochastic case, the expected rate of change in consumption is much
more complex. New terms appear that contain the stochastic characteristics
of the model, as well as the prudence attitude of the players. We find that a
higher prudence index leads to a higher mean increment in consumption. We
also prove a general result on the overall effect of uncertainty and show that,
under the standard hypothesis of concavity on the bequest and the recruit-
ment functions, the larger the uncertainty, the larger the consumption rate of
the players. Thus, uncertainty sharpens competition among players5. It turns
out that the KR rule is very useful in doing some exercises on comparative
statics, studying the effect on the equilibrium of a variation in the number of
players and in the time preference rate.

We also study the curvature of the equilibrium, finding conditions such
that the consumption equilibrium is concave with respect to the state vari-
able. The curvature of the consumption rule gives us information concern-
ing players’ propensity to consume. A concave consumption rule implies a
higher propensity to consume for poor people than for rich people. Carroll
and Kimball (1996) proved concavity of the consumption function in a one
player game of finite horizon and discrete time, where uncertainty comes from
three sources: labor income, gross interest rate and discount factor. The family
of utility functions considered by those authors were of the constant relative

5 Note that this claim has no direct implications for the precautionary savings behavior of
players , as the context is different. Precautionary savings means that the agent saves more
today when there is uncertainty in his/her tomorrow’s income than when the uncertainty is
eliminated by adding the expected income to the wealth process. We do not carry out this
exercise here, but compare the Markov equilibrium strategies of two games with different dif-
fusion coefficients, without modifying the income process (in this case, the productive asset
process). Usually, precautionary savings appear when the marginal utility is convex, which
can be easily proved in two period, discrete time models by means of Jensen’s inequality,
see Leland (1968).
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risk aversion class (CRRA henceforth), strictly increasing, concave, and with
convex marginal utility. We consider only one source of uncertainty, but use
continuous time and allow for a rather general bequest function, whereas Car-
roll and Kimball (1996) consider no bequest function at the end of the game.
We obtain definite results only for the game we call the linear game, which
will be defined below.

Finally, we analyze extinction, that is, whether the competition could lead
to an overexploitation of the resource and eventually drive the resource stock
to zero. It is also worth comparing the stochastic case we deal with here and
the deterministic case, analyzed in Clemhout and Wan (1985). We show that
uncertainty raises the possibility of extinction.

The paper has the following structure. Section 2 contains the definition of
a general stochastic game where player’s actions do no affect the size of un-
certainty, as well as the definition of admissible strategies and of the MPNE.
Then it comes the deduction of the EL equation system from the HJB equa-
tion. Section 3 presents the game of exploitation of an stochastic productive
asset and the associated EL equations. This section also contains the basic
assumptions we need to attain our results and a characterization of a family
of utility functions that fulfill them. In Section 4 we prove the existence and
uniqueness of MPNE in two steps: first, we prove existence and uniqueness–
within a given class of functions–of solution to the EL equation by extending
classical results from the PDE theory to our framework. These technical results
are relegated to Appendix A; second, we prove that the solution of the PDE
is in fact an MPNE of the game. Some insights into the infinite horizon game
are also provided. Section 5 focuses on the KR rule and Section 6 is devoted
to study some properties of the equilibrium. Besides the comparative statics
of the equilibrium, we obtain a turnpike result and analyze the question of the
extinction of the resource. Finally some conclusions are extracted from the
paper in Section 7. Appendix A contains the results about PDEs commented
above, as well as other proofs that we consider of a technical character.

2 Description of the game and Euler-Lagrange equations

In this section we formulate a general stochastic differential game to which
the model studied in the paper is a particular case. Standard references for
differential games are Melhmann (1998), Başar and Olsder (1999) or Dockner
et al (2000).

We shall use the following notation. The partial derivatives are indicated
by subscripts and ∂x stands for total derivation; the partial derivative of a
scalar function with respect to a vector is a column vector; given a real vector
function g : Rn −→ Rm and a vector z ∈ Rn, gz is defined as the matrix
(∂gi/∂zj)i,j ; for a matrix A, A(i) denotes the ith column and Aij denotes the
(i, j) element; vectors v ∈ Rn are column vectors and vi is the ith component;
> denotes transposition.
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We consider an N–person differential game over a fixed and bounded
time interval [0, T ] with 0 < T ≤ ∞. Let (Ω,F ,P) be a complete prob-
ability space. Assume that on this space a d–dimensional Brownian motion
{w(t),Ft}t∈[0,T ] is defined with {Ft}t∈[0,T ] being the Brownian filtration. Let
E denote expectation under the probability measure P. We also consider the
function space L2

F ([0, T ];Rn) of all processes X(·) with values in Rn adapted

to filtration {Ft}t≥0 such that E
∫ T
0
‖X(t)‖2 dt <∞.

The state space is a subset X ⊆ Rn and the set of admissible profiles
of the players is some subset U = U1 × U2 × · · · × UN , where U i ⊆ Rmi ,
with6 mi = n, for all i = 1, . . . , N . A U–valued process of strategic profiles
{(u(s);Fs) = ((u1(s), u2(s), . . . , uN (s));Fs)} defined on [t, T ]×Ω is an Fs–
progressively measurable map (r, ω)→ u(r, ω) from [t, s]×Ω into U , that is,
u(t, ω) is Bs ×Fs–measurable for each s ∈ [t, T ], where Bs denotes the Borel
σ–field in [t, s]. For simplicity, we will denote u(t, ω) by u(t) .

The state process X ∈ Rn satisfies the system of controlled stochastic
differential equations (SDEs henceforth)

dX(s) = f(s,X(s), u(s)) ds+ σ(s,X(s)) dw(s), t ≤ s ≤ T, (1)

with initial condition X(t) = x, t ∈ [0, T ], x ∈ Rn. Observe that the diffusion
coefficient, σ, is independent of the control variable, u. The functions f :
[0, T ]× Rn × U −→ Rn and σ : [0, T ]× Rn −→ Rn×d are both assumed to be
of class C2 with respect to (x, u) and of class C1 with respect to t. Since our
aim is to work with the MPNE concept, we will consider the game for every
initial condition (t, x).

Definition 1 (Admissible strategies) A strategic profile
{(u(t);Ft)}t∈[0,T ] = {((u1(t), u2(t), . . . , uN (t));Ft)}t∈[0,T ] is called admissible
if

(i) for every (t, x) the system of SDEs (1) with initial condition X(t) = x
admits a pathwise unique strong solution;

(ii) for each i = 1, . . . , N, there exists some function φi : [0, T ]×Rn −→ U i of
class C1,2 with respect to (t, x) such that ui is in relative feedback to φi,
i.e. ui(s) = φi(s,X(s)) for every s ∈ [0, T ].

Let U i(t, x) denote the set of admissible strategies of player i and U = U1 ×
· · · × UN the set of admissible strategies profiles, corresponding to the initial
condition (t, x) ∈ [0, T ]× Rn.

Part (ii) in Definition 1 means that players use Markov strategies. When
φi is time independent, we will say that the strategy is a stationary Markovian
strategy.

The instantaneous utility function of player i is denoted by Li and his
or her bequest function by Si. Given initial conditions (t, x) ∈ [0, T ] × Rn

6 The case mi > n could also be analyzed, by means of a reduction to the case mi = n
as in Josa–Fombellida and Rincón–Zapatero (2007).
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and an admissible strategic profile u, the payoff function of each player (to be
maximized) is given by

J i(t, x;u) = Etx

{∫ T

t

e−ri(s−t) Li(s,X(s), u(s)) ds+ e−ri(T−t)Si(T,X(T ))

}
,

where Etx denotes conditional expectation with respect to the initial condition
(t, x). In the following, the subscript will be eliminated if there is no confusion.
The functions Li : [0, T ] × Rn × U −→ R and Si : [0, T ] × Rn −→ R, i =
1, . . . , N , are both of class C2 with respect to (x, u) and of class C1 with respect
to t. The constant ri ≥ 0 is the rate of discount. J i(t, x;u) denotes the utility
obtained by player i when the game starts at (t, x) and the profile of strategies
is u. Given that our aim is to solve the problem for every (t, x) ∈ [0, T ]×Rn,
U will often be written instead of U(t, x).

In the infinite horizon case, the bequest functions Si are null. In this case,
if the problem is autonomous and the strategies are Markov stationary, the
value function is independent of time, and the initial condition is simply x.

In a non–cooperative setting, the aim of the players is to maximize their
individual payoff J i. Since this aspiration depends on the strategies selected
by the other players also, it is generally impossible to attain7. An adequate
concept of solution is Nash equilibrium, which prevents unilateral deviations
of the players from its recommendation of play.

Definition 2 (MPNE) An N–tuple of strategies φ̂ ∈ U is called a Markov
perfect Nash equilibrium if for every (t, x) ∈ [0, T ]× Rn, for every φi ∈ U i

J i(t, x; (φi|φ̂−i)) ≤ J i(t, x; φ̂),

for all i = 1, . . . , N .

In the above definition, (φi|φ̂−i) denotes (φ̂1, . . . , φ̂i−1, φi, φ̂i−1, . . . , φ̂N ). Note
that with an MPNE no player has incentives to deviate unilaterally from the
equilibrium, whatever the initial condition (t, x) is.

Definition 3 (Value functions) Let φ̂ be an MPNE of the game. The value
function V i of the ith player is

V i(t, x) = sup
φi∈Ui

{
J i(t, x; (φi|φ̂−i)) : dX(s) = f(s,X(s), (φi|φ̂−i)(s,X(s))) ds

+ σ(s,X(s)) dw(s), ∀s ∈ [t, T ], X(t) = x
}
,

for all (t, x) ∈ [0, T ]× Rn, for all i = 1, . . . , N.

7 But in some models the MPNE is also Pareto optimal; see Mart́ın–Herrán and Rincón–
Zapatero (2005).
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Theorem 1 (Euler-Lagrange equations) Suppose that for all i = 1, . . . , N ,
V i and φi are of class C1,2, that V ixt = V itx and that φi is interior to the control
region U i. Then (φ1, . . . , φN ) satisfy the system of PDEs

riΛ
i(t, x, φ) =

∂

∂t
Λi(t, x, φ)+

∂

∂x
Hi(t, x, φ, Λi(t, x, φ))+

1

2

∂

∂x
Tr
(
σσ>

∂

∂x
Λi(t, x, φ)

)
,

(2)
with final conditions φi(T, x) = ϕi(x) given implicitly by

Liui(T, x, ϕ
1(x), . . . , ϕN (x)) + Six(T, x)fui(T, x, ϕ

1(x), . . . , ϕN (x)) = 0, (3)

for i = 1, . . . , N .

Proof The smoothness of the value functions of the players guarantee that
they satisfy the HJB equations with terminal conditions

riV
i(s, x) = V it (s, x) + max

ui∈Ui
Hi(s, x, (ui|φ−i), V ix(s, x)) +

1

2
Tr(σσ>V ixx)(s, x),

(4)

V i(T, x) = Si(T, x), t ≤ s ≤ T,

where Hi is the Hamiltonian of player i

Hi(s, x, u, λi) = Li(s, x, u) + (λi)>f(s, x, u).

Since the MPNE is interior to U = U1 × · · · × UN , the maximization
condition

max
ui∈Ui

Hi(t, x, (ui|φ−i), V ix), i = 1, . . . , N

turns into

Liui(s, x, (φ
i|φ−i)) + fui(s, x, (φ

i|φ−i))>V ix = 0, i = 1, . . . , N

which is explicitly solvable for V ix = Λi(s, x, φ) := f−>ui Liui(t, x, φ), supposing
f iu to be invertible for all i. The above equality also holds at time t = T . Since
V (T, x) = S(x), Vx(T, x) = S′(x). Plugging this value into the equality we get
the final condition (3). On the other hand, by the Envelope Theorem, for each
j = 1, . . . , n we obtain

riV
i
xj (t, x) = V ixjt(t, x) +

∂

∂xj
Hi(t, x, φ, V ix(t, x)) +

1

2

∂

∂xj
Tr(σσ>V ixx)(t, x)).

Substituting now V ix = Λi(t, x, φ) we get for the MPNE φ = (φ1, . . . , φN ) the
EL system of equations of differential type given in (2). ut

Notice that ∂/∂x denotes total differential with respect to x. No explicit
dependence of the value functions appears, as in the EL Equations in discrete
dynamic programming.
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3 Competition for consumption of a stochastic productive asset:
Game, assumptions and Euler-Lagrange Equations

3.1 The game

We consider a continuous time non-cooperative game where N agents consume
a stochastic productive asset. Asset stock at time t ≥ 0 is denoted by X(t) and
the consumption rate of player i ∈ {1, . . . , N}, denoted ci(t), is given through
a Markov strategy φi : [0, T ]× [0,∞) −→ [0,∞), that is, ci(t) = φi(t,X(t)).8

Given a consumption profile of Markov strategies of the other players, φ−i =
(φ1, . . . , φi−1, φi+1, . . . , φN ), player i chooses consumption ci ≥ 0 to maximize
his/her payoff

Ji(t, x, φ−i; c
i) = Etx

∫ T

t

e−ri(s−t)Li(c
i(s)) ds+ e−ri(T−t)EtxSi(X(T )).

This is given by the expected total utility of consumption, Li(c
i), over a fixed

time horizon [0, T ], plus the utility derived from the asset stock at the end of
the period, Si, both discounted at the rate ri > 0. The utility Li could be equal
to sale revenue, Li(u

i) = uipi(u
i), where pi is an inverse demand function. The

bequest function Si reflects the fact that the asset has externality effects over
the players. The asset stock must satisfy X(s) ≥ 0 almost surely (a.s.) for
all s. Some of the assumptions listed below guarantee that both constraints
ci(s) ≥ 0 and X(s) ≥ 0 a.s. for all s are satisfied in equilibrium. The asset
evolves according to the SDE

dX(s) =

F (X(s))− ci −
∑
j 6=i

φj(s,X(s))

 ds+ σ(X(s))dw(s), (5)

where w is a standard Brownian motion defined on a complete probabilistic
space (Ω,F ,P). As explained in the previous section, Etx is the conditional
expectation with respect to the initial condition (t, x) under the probability
measure P, where x = X(t) > 0. The asset stock reproduces at the rate given
by the production/recruitment function F , which may be a natural growth
function describing the dynamics of a renewable resource, such as a fish pop-
ulation. In this case it is common to consider F with a maximum sustainable
yield and with a maximum carrying capacity. We do not restrict ourselves to
this case. The evolution of the asset is affected by stochastic fluctuations given
by the diffusion term σ(X(s)). The uncertainty may come from inaccurate es-
timation of the resource reserves, which need to be continuously updated by
the players. The game is widely used in the design of optimal harvest rules
in stochastic fisheries under competition. Conrad (2012) uses this model to
measure the effect of competition on the welfare of the players and carries out
a calibration with real data and five players, finding that the predictions of
the model are consistent with reality.

8 The game is a particular case of the general framework described in Section 2 above.
The class of admissible strategies is given in Definition 1.
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3.2 The Euler-Lagrange Equations

The starting point of our approach to the game is the system of EL equations
(2) given in Theorem 1. Let ϕi = (L′i)

−1 ◦ S′i, i = 1, . . . , N , that defines the
optimal strategy of player i at the end of the game. In the following lemma the
symbols ∂t, ∂x, denote total derivative with respect to t, x; details are given
in Section 2 above.

Lemma 1 Suppose that the functions defining the game are twice continuously
differentiable. Then a MPNE given by Markov strategies φ = (φ1, . . . , φN ) of
class C1,2 satisfies the following system of EL equations:

riL
′
i(φ

i(t, x)) = ∂tL
′
i(φ

i(t, x))

+ ∂x

(
Hi(x, φ(t, x), L′i(φ

i(t, x))) +
1

2
σ2(x)∂xL

′
i(φ

i(t, x))

)
(6)

for i = 1, . . . , N , with final value

φi(T, x) = ϕi(x), x > 0 (7)

and boundary condition

φi(t, 0) = 0, ∀t ≤ T. (8)

Proof To obtain the EL equations, consider the current adjoint function and
the current Hamiltonian of each player:

Adjoint function: Λi(x, (ci|c−i)) = L′i(c
i),

Hamiltonian: Hi(x, (ci|c−i), λi) = Li(c
i) +

F (x)− ci −
∑
j 6=i

cj(s)

λi.

Now we apply Theorem 1 to obtain the EL equation (6) and final condition
(7). The boundary condition (8) is a requirement imposed by feasibility. ut

In the infinite horizon case the EL equation system is still (6), but there is
no terminal condition (7). For stationary Markov strategies the term ∂tL

′
i =

L′′i φ
i
t vanishes. Condition (8) becomes φi(0) = 0.

Let Ri = −L′i/L′′i be the absolute risk tolerance index (the inverse of
the absolute risk aversion index of Arrow–Prat) and Pi = −L′′′i /L′′i be the
absolute prudence index of player i as defined in Kimball (1990). Taking total
derivatives in (6) we get, for i = 1, . . . , N

φit(t, x) +
(
F (x)−

N∑
j=1

φj(t, x) + σ′(x)σ(x)
)
φix(t, x)− 1

2
σ(x)2Pi(φ

i(t, x))(φix(t, x))2

+
1

2
σ(x)2φixx(t, x) +Ri(φ

i(t, x))
(
ri − F ′(x) +

∑
j 6=i

φjx(t, x)
)

= 0.

(9)
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In the rest of the paper we center on the symmetric game and on the
symmetric MPNE. Thus, for all i = 1, . . . , N ,

Li = L, Si = S, ri = r

and hence we will drop the index in the functions defined above. The symmetry
condition leads to the same risk tolerance and same prudence indexes for each
player, Ri = R and Pi = P for any i, as well as the same terminal value at
time T , ϕi = ϕ. Under this assumption, the symmetric MPNE leads, after
rearrangement of (9), to the single EL equation

φt(t, x) +
(
F (x)−Nφ(t, x) + (N − 1)R(φ(t, x)) + σ′(x)σ(x)

)
φx(t, x)

− 1

2
σ(x)2P (φ(t, x))φx(t, x)2 +

1

2
σ(x)2φxx(t, x) +R(φ)(r − F ′(x)) = 0,

(10)
with final and boundary conditions

φ(T, x) = ϕ(x) = (L′)−1(S′(x)), x > 0,

φ(t, 0) = 0, t < T,
(11)

respectively.
Let ρ(c) = R(c)/c be the elasticity of intertemporal substitution for riskless

consumption paths and π(c) = P (c)c the relative prudence index.

3.3 Assumptions

To get our results of existence and uniqueness of a symmetric MPNE of the
game, we need to impose several assumptions. They are justified after they
are stated.

(A1) Functions L, S, F and σ are continuous in [0,∞), with L(0) = F (0) =
σ(0) = 0, σ(x) > 0 for x > 0. Function L is of class C6 and S, F and σ are
of class C4 in (0,∞). Moreover, both F ′ and σ′ are bounded in (0,∞).

(A2) The instantaneous utility function L is strictly concave, with L′′′ ≥ 0 and
R(0) = 0.

(A3) (a) There exist constants 0 ≤ ρ− ≤ ρ+ < N
N−1 such that

ρ− ≤ ρ(c) ≤ ρ+ for all c ≥ 0.

(b) There exist constants 0 ≤ π− ≤ π+ such that

π− ≤ π(c) ≤ π+ for all c > 0.

(A4) Function ϕ satisfies ϕ(0) = 0 and ϕ(x) > 0 for x > 0.
(A5) There is a function f , continuous in [0,∞) and of class C4 in (0,∞) with

f ′ bounded, satisfying f(x) > 0 for x > 0 such that
(a) f ′(0+) = limx→0+ f(x)/x exists and is finite.
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(b) The function ϕ0 = ϕ/f satisfies

M ≡ sup
x∈[0,∞)

ϕ0(x) <∞, m ≡ inf
x∈[0,∞)

ϕ0(x) > 0.

(c) For x > 0, let

γ+(x) = max{ρ−(r − F ′(x)), ρ+(r − F ′(x))},
γ−(x) = min{ρ−(r − F ′(x)), ρ+(r − F ′(x))}

and let

β+(x) = (F (x) + σ′(x)σ(x))

(
f ′(x)

f(x)

)
+

1

2
σ2(x)

(
f ′′(x)

f(x)

)

− π−

2
σ2(x)

(
f ′(x)

f(x)

)2

+ γ+(x),

β−(x) = (F (x) + σ′(x)σ(x))

(
f ′(x)

f(x)

)
+

1

2
σ2(x)

(
f ′′(x)

f(x)

)

− π+

2
σ2(x)

(
f ′(x)

f(x)

)2

+ γ−(x).

We assume that

−∞ < β− ≡ inf
x∈[0,∞)

β−(x), β+ ≡ sup
x∈[0,∞)

β+(x) <∞.

We will say that a function f satisfying this assumption is a limiting func-
tion for the equilibrium.

Let us explain the assumptions.

– Assumption (A1) establishes the required smoothness of the data to apply
our results and imposes finite marginal productivity at 0 and at +∞. Con-
cavity of F is not needed. Note that (A1) implies the existence of constants
A and σ such that −Ax ≤ F (x) ≤ Ax and 0 ≤ σ(x) ≤ σx, for all x ≥ 0.
Hence, production functions with F ′(0+) = +∞ are excluded. This is the
same assumption as in Foldes (2001).

– Assumption (A2) imposes strict concavity of the instantaneous utility L,
a standard property that seems to be unavoidable for the existence of an
interior and smooth equilibrium. The assumption L′′′ ≥ 0 is typical in con-
sumer theory and, for a concave utility L, it implies a positive prudence
index. Consumers with a positive prudence index tend to make extra sav-
ings in the present date due to future income being random, a behavior
known as precautionary savings. The condition R(0) = 0 guarantees that
the solution of the EL equation is non–negative.
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– Assumption (A3) is key for proving existence of a smooth solution of the
EL equation (10) and boundary conditions (11), and allows us to get con-
vergence of the finite horizon approximations to the solution of the infi-
nite horizon case with constant relative risk aversion instantaneous utility
(CRRA henceforth). It assumes that both the elasticity of intertemporal
substitution and the relative prudence index are bounded. However, we
allow for unbounded utility functions L. In particular, the CRRA utility
case is covered in our framework, as in the linear game defined below.
Condition (a) means that the willingness of the players to substitute con-
sumption across time is bounded by the ratio N/(N−1), which depends on
the number of players. As will be shown in Corollary 1 below, this condition
cannot be relaxed if one seeks for interior and smooth equilibria, since it
prevents the blow up of the solution of the EL equation (10) in finite time.
The upper bound decreases as N increases. In the limit when N → ∞, it
becomes 1, but in the other extreme case with only one player, it places
no constraint. Note that whereas we consider the stochastic game with
ρ(c) < N/(N − 1), Dockner and Sorger (1996) studied the deterministic
game with utility L(c) =

√
c and two players, where ρ(c) = N/(N − 1) = 2

for all c, leading to a continuum of symmetric discontinuous MPNE in
the game with infinite horizon. Sorger (1998) attains the same result for
more general utility functions satisfying ρ(c) ≥ N/(N − 1). In both cases
the equilibrium exists due to the imposition of an upper bound in the con-
sumption rate. The MPNE prescribes consumption at the maximal allowed
rate for high enough values of the resource stock, so that the equilibrium is
no longer interior. We study here the case left aside in the aforementioned
references, in a stochastic environment.

– Assumption (A4) takes care of feasibility: it establishes that, at the final
time T , consumption is positive as soon as there is something to consume,
φ(T, x) > 0 if x > 0, and that it is feasible, φ(T, 0) = 0.

– Assumption (A5) is a way to generalize our results including in our analysis
games with unbounded bequest function S, production function F and
diffusion coefficient σ. The selection of a given f will depend on the form
of these functions. Moreover, it provides lower and upper estimates for the
consumption rule. The role of the constants β+ and β− will be made clear
in the proof of the theorem of the existence of smooth solutions of the EL
equation, given in Appendix A.

We now introduce new notation that will be used throughout the paper

α+ = ρ+(N − 1)−N, α− = ρ−(N − 1)−N. (12)

Assumption (A3) (a) implies that α− ≤ α+ < 0.

We illustrate the above assumptions in a particular game, that we will call
the linear game with CRRA instantaneous utility, or simply the linear game,
which is defined now for further reference.
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Definition 4 The linear game corresponds to a CRRA instantaneous utility

L(c) =
c1−δ

1− δ
, if 0 < δ < 1,

where both F and σ are linear, F (x) = Ax, σ(x) = σx, for some constants
A ≥ 0, σ > 0.

Note that no specific functional form is imposed on the bequest function S.
Linear production functions appear in endogenous growth models, where they
are known as AK-models . We will use the linear game as a touchstone to
illustrate the results obtained along the paper.

For the linear game, f(x) = x is an adequate selection as a limiting func-
tion whenever the bequest value S satisfies, in accordance with Assumption
(A4) S′(0+) = ∞ and S′(x) > 0 for x > 0, and ϕ(x) = S′(x)−1/δ satisfies
Assumption (A5), that is

inf
x>0

S′(x)−1/δ

x
> 0, sup

x>0

S′(x)−1/δ

x
<∞.

The remaining elements are R(c) = c
δ , P (c) = 1+δ

c , ρ(c) = 1
δ and π(c) =

1 + δ, and the several constants defined above are

ρ ≡ ρ− = ρ+ =
1

δ
,

π ≡ π− = π+ = 1 + δ,

α ≡ α+ = α− = (N − 1)/δ −N < 0 iff δ > 1− 1/N,

β ≡ β− = β+ = A+
σ2

2
(1− δ) +

r −A
δ

.

3.4 A class of utility functions satisfying the standing hypotheses

There are many utility functions L other than in the CRRA class that sat-
isfy assumptions (A1)-(A3). We are specially interested in the class of utility
functions with relative risk seeking index given by

ρ(c) =
ψ1c

θ + µ1

ψ2cθ + µ2
, ψ1, ψ2, µ1, µ2 > 0. (13)

The parameter θ is arbitrary, but θ = 0 leads to a constant ρ and thus, to the
CRRA class. Our aim is to show a wider class of admissible utility functions
that still have both ρ and π bounded. The case θ < 0 is a mirror case of θ > 0,
exchanging the roles of the constants, since

ρ(c) =
ψ1 + µ1c

−θ

ψ2 + µ2c−θ
, −θ > 0.
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Hence the results below are established only for θ > 0. Moreover, if ∆ ≡
ψ1µ2 − ψ2µ1 = 0, then ρ = µ1/µ2, leading to the CRRA class again, thus we
assume ∆ 6= 0. It is clear that ρ is bounded, since it is continuous in [0,∞)
and limc→∞ ρ(c) = ψ1/ψ2 exists and is finite. In fact, the sign of ρ′ is the sign
of ∆, thus ρ is monotonous increasing or decreasing, and hence ρ is bounded
between the values µ1/µ2 and ψ1/ψ2. We will assume ∆ > 0. Moreover, π is
also bounded. To show this claim, note that9 ρ′c+ ρ = −1 + ρπ, hence solving
for π one gets

π(c) = 1 +
1

ρ(c)
+
cρ′(c)

ρ(c)
.

The summand 1 + 1
ρ(c) is bounded. The other summand equals

θ∆cθ

(ψ1cθ + µ1)(ψ2cθ + µ2)
,

which is continuous in c and with limit θ∆
ψ1ψ2

as c → ∞. Thus, π is bounded.
In fact, the function z 7−→ z

(ψ1z+µ1)(ψ2z+µ2)
attains a global maximum at

z∗ =
√

µ1µ2

ψ1ψ2
. The explicit bounds for both ρ and π, under the assumption

∆ > 0, are

ρ+ = max

{
ψ1

ψ2
,
µ1

µ2

}
,

ρ− = min

{
ψ1

ψ2
,
µ1

µ2

}
,

π+ = 1 +
1

ρ−
+

θ∆z∗

(ψ1z∗ + µ1)(ψ2z∗ + µ2)
,

π− = 1 +
1

ρ+
.

In the following proposition, uniqueness means modulo multiplication and
addition of constants.

Proposition 1 Let us assume that θ > 0, ∆ > 0 and µ2 < µ1. Then there
exists a unique utility function L that satisfies assumptions (A1)-(A3) and
that has ρ as given in (13). The marginal utility is given by

L′(c) = c−
µ2
µ1 (ψ1c

θ + µ1)
∆

ψ1µ1θ . (14)

Proof By the comments and assumptions made before the proposition, both ρ
and π are bounded. Note that L′ defined in the proposition is infinitely differ-
entiable in (0,∞) and positive. Let L(c) =

∫ c
0+
L′(z)dz, c > 0. The definition

9 This relationship between ρ and π is general and follows from the identity R′ = −1+RP
and the definitions of ρ and π.
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is right, as this improper integral is convergent under the assumption µ2 < µ1.

This is because
∫ 1

0+
c−

µ2
µ1 dc is convergent and

lim
c→0+

c
µ2
µ1 L′(c) <∞,

thus the comparison criterium leads to the claim. Moreover, L(0) = 0 and L is
smooth in (0,∞). Starting from (14) it is easy to calculate L′′, that is negative
(and thus L strictly concave), as well as to check that ρ is given by (13). The
assumption ∆ > 0 implies that L′′′ > 0 as well. ut

We have not been able to find the explicit form of L. But to have an specific
functional form is only for convenience, as the important characteristics of a
consumer are given by the marginal utility and the attitude towards risk. They
are the only pieces of information we need to proceed with our investigations.

It is also clear that if, for instance, we postulate an utility function L with

L′(c) = c−δ(Dcθ + E)ξ (15)

and δ, θ, ξ,D,E > 0, δ < 1, then the associated ρ is of the form given in
(13) after a suitable identification of the constants ψ1, ψ2, µ1, µ2 in terms of
δ,D,E, ξ. It is

ψ1 = D,

µ1 = E,

ψ2 = D(δ − θξ),
µ2 = δE,

with θξ < δ to ensure ψ2 > 0. Also note that ∆ = DEθξ > 0. For this function
L, ρ+ = 1

δ−θξ and α+ = ρ+(N −1)−N < 0 holds for N < 1
1−(δ−θξ) , where α+

is defined in (12). This condition is fundamental in Theorem 2 below about
existence of solutions of the PDE.

We will need for Section 5 a further characterization, that consists in iso-
lating, within this class of utility functions, a subclass such that ρ and π show
a linear tradeoff, π = b− aρ, a, b > 0. This means that increasing the elastic-
ity of substitution one unit is only possible at the expense of decreasing the
relative prudence index a units.

Proposition 2 Let ρ be as given in (13). Then, π = b− aρ if and only if

∆ = ψ1µ1θ, (16)

and the constants a, b are given by

a =
ψ2µ2

ψ1µ1
, (17)

b = 1 +
ψ2

ψ1
+
µ2

µ1
. (18)
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Proof Given ρ, we compute L′ as in Proposition 1 and then π. The sufficient
part is easily checked by substitution. For the necessary part, by imposing
π− b+ aρ = 0 for unknown positive constants a, b, three equations have to be
fulfilled

a

(
ψ1

ψ2

)2

+ (1− b)
(
ψ1

ψ2

)
+ 1 = 0,

a

(
µ1

µ2

)2

+ (1− b)
(
µ1

µ2

)
+ 1 = 0,

2aψ1µ1 + (1− b)(ψ1µ2 + µ1ψ2) +∆θ + 2ψ2µ2 = 0. (19)

The two first equations say that the parabola aη2 + (1− b)η + 1 has positive
solutions ψ1/ψ2 and µ1/µ2. From this, one easily gets the sum and the product
of roots

b− 1

a
=
ψ1

ψ2
+
µ1

µ2
,

1

a
=
ψ1

ψ2

µ1

µ2
.

From the second equation we get (17). Plugging this value into the first
equation above we get (18). Now, using (19), and after some manipulations,
the compatibility condition (16) arises. Finally, note that b > 1 as well as

(1− b)2 − 4a =
(
ψ2

ψ1
− µ2

µ1

)2
> 0. ut

Continuing with example (15), L shows a linear relationship between ρ
and π if and only if ∆ = DEθξ = DEθ = ψ1µ1θ, that is, ξ = 1. Hence
L′(c) = x−δ(Dxθ + E) and then L is the sum of two CRRA utilities.

We wish to establish the converse of Proposition 2. We need the following
lemma, that will be also used in Section 5 below.

Lemma 2 Let the general Riccati differential equation cρ′(c) = −aρ2 + (b −
1)ρ− 1, where a, b > 0 are constants such (b− 1)2 > 4a and b > 1. Then the
general solution is

ρ(c) =
ηKcθ + 1

ηθ

Kcθ + a
θ

, (20)

where θ = 2aη−b+1 > 0, η > 0 is the bigger solution of aη2+(1−b)η+1 = 0,
and K > 0 is arbitrary.

Proof According to Polyanin and Zaitsev (1995, eqn. 1.2.2.22), after taking
z = cb−1 and y = ρc1−b, the ODE transforms into the special Riccati equa-
tion y′(z) = a

1−by
2 + 1

1−bz
−2. The general solution of this equation is, again

following Polyanin and Zaitsev (1995, eqn. 1.2.2.36)

y(z) =
η

z
− z2

a
1−bη

a
1−b z

2 a
1−bη+1z

2 a
1−bη +K

,
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where K is an arbitrary constant and η is solution of the quadratic equation
aη2 + (1− b)η + 1 = 0. Now, turning back to the original variables, we obtain

ρ(c) = η − c−2aη+b−1
a

1−b
2 a

1−bη+1c
−2aη+b−1 +K

.

Manipulating this expression, and using the definition of θ and of η, it is
straightforward to get (20). Finally, the assumptions done imply that η > 0
exists and that θ > 0, since

– The quadratic equation admits the positive solution η = (b − 1)/2a +√
(b− 1)2 − 4a/2a.

– θ > 0 is equivalent to η > (b− 1)/2a, which is true by the item above.
ut

Looking at (13) and at (20), the following identification of parameters
follows

θ = 2aη − b+ 1,

ψ1 = ηK,

µ1 =
1

ηθ
,

ψ2 = K,

µ2 =
a

θ
.

(21)

Of course, (16), (17) and (18) hold.

Proposition 3 Let L be a three-time differentiable utility function such that
π = b− aρ for some constants a, b > 0, where b > 1 and (b− 1)2 > 4a. Let η
be the larger solution of the quadratic equation aη2 + (1 − b)η + 1 = 0. Then
the associated ρ is given by (13), with parameters given in (21). If L(0) = 0,
then aη < 1 holds.

Proof It is consequence of the previous lemma. All the parameters are positive
and ∆ = K

ηθ (aη2−1) = K > 0 by assumption, since ηθ = aη2−1, by definition

of η and θ. When L(0) = 0, the improper integral
∫ c
0
L′(z)dz is convergent,

see the proof of Proposition 1. This implies that µ2 < µ1, which is aη < 1. ut

4 Existence of a symmetric MPNE

In the following results we will suppose that the assumptions imposed in the
above section hold. To show existence of an MPNE, we proceed in two steps.
First we establish a result about the existence of a solution to the EL equa-
tion, providing at the same time upper and lower bounds for the solution.
In a second step, we will prove that under suitable additional conditions the
solution qualifies as an MPNE of the symmetric game. The consideration of
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a limiting function f in the estimates found for the solution of the EL equa-
tion in the next result allows us to drop the boundedness hypothesis that is
commonly assumed in the PDE literature. Boundedness is a severe limiting
assumption in economic models, since it eliminates CRRA utility functions
and linear production functions from the analysis, even though they are by
far the more popular and widely used in applications. Our approach will be
useful in proving that solutions of the EL equation are in fact an MPNE of
the game for a wide range of utility and production functions, as well as in
analyzing the turnpike properties of the finite–horizon MPNE.

4.1 Existence of smooth solutions to the Euler-Lagrange equation

The proof of the theorem below uses classical results of existence of solution to
PDEs, adapted to our framework with unbounded functions and unbounded
state space. For this reason (unboundedness), those results cannot be applied
directly, so we combine them with an approach that uses the maximum and
minimum values of solutions existing in finite time and bounded intervals of the
state space. These solutions provide upper and lower estimates for the solution
that prevent the blow up, or that the solution could become zero or negative,
in terms of the limiting function f defined in (A5) above. Thus, besides proving
existence of solution, we find a “window” moving with t where the solution is
confined for any x. As we will see, in the CRRA case, the window stretches as
the final date T tends to infinity, so that the finite horizon solution converges
to a solution of the infinite horizon EL equation. To find the upper and lower
bounds, we use a maximum principle for nonlinear parabolic PDEs together
with the well known envelope theorem due to Danskin (1966).

Recall the definitions made in the previous section of the constants α+, α−

in (12), as well as of M = supx∈(0,∞)
ϕ(x)
f(x) , m = infx∈(0,∞)

ϕ(x)
f(x) and β+, β− in

(A5). We will also use the following functions of t

k−(t) =
mβ−eβ

−(T−t)

α−m(sup(0,∞) f
′)(1− eβ−(T−t)) + β−

,

k+(t) =
Mβ+eβ

+(T−t)

α+M(inf(0,∞) f ′)(1− eβ+(T−t)) + β+
.

(22)

Note that thanks to our assumptions, these functions are well defined and are
obviously smooth, with 0 < k−(t) ≤ k+(t) <∞ for all t ≤ T . In the following
result, uniqueness has to be understood in the class of functions considered in
the theorem, satisfying the given bounds.

Theorem 2 Let assumptions (A1)–(A5) hold, with limiting function f . Then
there is a unique non-negative solution φ of class C2,4 of the Cauchy problem
(10) that satisfies φ(t, 0) = 0 for all t ∈ [0, T ] and the estimates

0 < k−(t)f(x) ≤ φ(t, x) ≤ k+(t)f(x)

for all x > 0 and t ∈ [0, T ].
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Proof See Appendix A. ut

4.2 A non-existence result

The lower estimate provided in Theorem 2 is useful to give a negative criterion
for the existence of an interior MPNE. To fix ideas, we consider a CRRA utility
L(c) = c1−δ/(1−δ) with ρ(c) > N/(N−1) (equivalently, α = (N−1)/δ−N >
0). The same analysis can be done for a general utility function, using the lower
bound α− defined in the previous section. As the following result shows, the
(local) smooth solution of the EL equation explodes in finite time, so no global
smooth solution exists. Since the EL equation is necessary for the optimality
of a smooth MPNE, we can conclude that no equilibrium exists in this case.
The intuition for this behavior is as follows: the willingness of the players to
substitute consumption across time is too high and this motivates a strong
competition to obtain the resource. Eventually, the consumption rate blows
up in finite time. As in the discrete-time model game studied in Dutta and
Sundaram (1993b), the Markovian first-best solution (N = 1) always exist but
in the competition version, the existence is not guaranteed, unless an upper
bound is imposed in the intertemporal rate of substitution of the players,
bound that is related with the number of players.

Corollary 1 Suppose that in the conditions of Theorem 2, α > 0. Then, for
T large enough, there is no smooth solution of the EL equation.

Proof We reason by contradiction, assuming that a smooth solution exists.
The bounds we have found in the proof of Theorem 2 above are still valid. In
particular, the lower bound with α > 0 implies that the denominator of k−(t)
in (22) vanishes at time

t̂ = T − 1

β
ln

(
1 +

β

αm supx∈(0,∞) f
′(x)

)
,

with 0 < t̂ < T , hence if a solution exists, it would satisfy

φ(t, x) ≥ k−(t)f(x)→∞ as t→ t̂+,

thus, the solution becomes infinite at a finite instant of time, reaching a con-
tradiction. ut

The corollary shows an extreme sensitivity of the MPNE with respect to
variations in the number of players that have free access to the asset, as
explained in the corollary just above. In fact, it implies the non existence
of an interior MPNE, and thus the imposition of an upper bound in con-
sumption is needed for the equilibrium to exist. In the CRRA case, with
δ denoting the elasticity of the marginal utility, there is a critical number,
N̂ = integer part of (1 − δ)−1, such that if the number of players is N̂ and
a new player enters the game, then the game changes drastically, since the
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MPNE blows up in finite time. For instance, if δ < 1/2, then N̂ = 1, so the
solution in the single player case is interior (as is always the case for the one
player model under our assumptions); but when a new identical player enters
the game, so that the game becomes a duopoly, the competition is so intense
that the players would like to consume all the resource instantaneously, a char-
acteristic already revealed by Reinganum and Stokey (1985) in a related game.
Dockner and Sorger (1996) and Sorger (1998) handle this case in the deter-
ministic game by imposing an upper bound in the maximal consumption rate,
proving the existence of a continuum of discontinuous MPNE.

4.3 Markov Perfect Nash Equilibrium and value function

We next show that the solution of the EL equation is indeed an MPNE of the
game. Given φ(t, x) a solution of the EL equation (10) satisfying the boundary
conditions (11), let us define for x > 0

λ(t, x) = Λ(x, φ(t, x)) = L′(φ(t, x))

and let H(x, c, p) = L(c) + p(F (x)−Nc). We will prove that λ is the costate
variable or asset shadow price, that is Vx = λ, where V denotes the value
function of the symmetric game. We will also show that φ is an MPNE and we
will provide the following expression for the value function in terms of φ(t, x):
for x > 0

V (t, x) =

∫ x

`

λ(t, z) dz

+

∫ T

t

e−r(s−t)
(
H(`, φ(s, `), λ(s, `)) +

1

2
σ2(`)λx(s, `)

)
ds+ e−r(T−t)S(`),

(23)
where 0 < ` < x is an arbitrary constant, and V (t, 0) = 0 for any t. The
corresponding expression for the value function in the infinite-horizon case is
given below the theorem.

In the proof of the following theorem we will need to define constants k−
and k+, that satisfy the inequalities

0 < k− ≡ min

{
m,− β−

α− sup(0,∞) f
′

}
≤ k−(t) ≤ k+(t) ≤ max

{
M,− β+

α+ inf(0,∞) f ′

}
≡ k+,

for any 0 ≤ t ≤ T , since α+ < 0.

Theorem 3 Assume that the conditions of Theorem 2 hold with a limiting
function f . Let 0 < γ < 1 be a constant such that for any k > 0, there is a
polynomial q and a constant D > 0 such that

∀x > 0, |L′(kf(x))| ≤ q(x) +Dx−γ , (24)

lim
x→0+

x−γF (x) = 0 (25)
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and
lim
x→0+

σ(x)2L′′(f(x)) = 0. (26)

Then, the non-negative solution φ, whose existence is guaranteed by Theo-
rem 2 , is an MPNE of the differential game. Moreover, the value function of
the players, given by (23), is of class C2,5 in (0,∞), continuous in [0,∞) and
V (t, 0) = 0 for all t ≥ 0.

Proof We first claim that for any T there exists a unique strong solution of

dX(s) =
(
F (X(s))−Nφ(s,X(s))

)
ds+σ(X(s)) dw(s), t < s ≤ T, X(t) = x,

(27)
which is positive almost surely. To show this, observe that both F and σ are
locally Lipschitz by assumption. On the other hand, the monotone condition

xF (x)−Nxφ(t, x) +
1

2
σ2(x) ≤ Kx2

holds for some constant K, since φ(t, x) ≥ 0, x ≥ 0 and because by (A.1)
F (x) ≤ Ax and σ(x) ≤ σx for some constants A and σ. Thus, according
to Theorem 3.6 in Mao (1997), there exists a unique strong solution of (27).
Moreover, since F (0) = σ(0) = φ(t, 0) = 0, Lemma 3.2 in Mao (1997) implies
X ≥ 0 a.s.

To continue with the proof, let W (t, x) be the right hand side of (23).
From the regularity of φ, W is of class C2,5 in [0, T ) × (0,∞). Let us show
that limx→0+ W (t, x) = 0, so that W (t, 0) can be defined as 0 = V (t, 0). Note
that by (24) and since L′ is decreasing and k−f(x) ≤ φ(t, x) ≤ k+f(x) for all
x > 0

|λ(t, x)| = |L′(φ(t, x))| ≤ max{|L′(k−f(x)|, |L′(k+f(x))|} ≤ q(x) +Dx−γ ,
(28)

for a suitable polynomial q and constant D. Hence∫ x

0

|λ(t, z)| dz ≤
∫ x

0

q(z)dz +D
x1−γ

1− γ
→ 0, as x→ 0+,

since the integral in the right hand side is an homogeneous polynomial and
γ < 1. Since

∫ x
0
z−γdz is convergent, then

∫ x
`
λ(t, z) dz tends to zero as x→ 0+

(and thus `→ 0+), which is the first integral in the definition of W . The second
integral defining W is with respect to time. Regarding the Hamiltonian H, note
that L(0) = 0, so by concavity of L, L′(c)c ≤ L(c). Hence

L′(φ(t, `))|F (`)−Nφ(t, `)| ≤ L′(φ(t, `))F (`) +NL′(φ(t, `))φ(t, `)

≤ (q(`) +D`−γ)F (`) +NL(φ(t, `))

tends to 0 uniformly since ` → 0+ by (25) and φ(t, `) → 0. The second
summand in the integral is 1

2σ
2(`)λx(s, `). Let us show that it tends to 0 as

`→ 0. Note that φ(t, 0) = 0 and

k−
f(x)

x
≤ φ(t, x)

x
≤ k+

f(x)

x
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imply k−f
′(0+) ≤ φx(t, 0+) ≤ k+f

′(0+), thus φx(t, ·) is bounded around 0
and in consequence

σ2(`)L′′(k+f(`))φx(s, `) ≥ σ2(`)λx(s, `) ≥ σ2(`)L′′(k−f(`))φx(s, `)

where we have used that L′′′ ≥ 0. Now, by (26), both sides tend to 0 as `→ 0.
Now let us show that W satisfies the Hamilton-Jacobi-Bellman equation

for any x > 0 and t < T . Observe that, for x > 0, Wx = λ and Wxx = λx by
the definition of W . Let g(t) be the function of t given in the second summand
of (23). The derivative is

g′(t) = rg(t) +H(`, φ(t, `), λ(t, `)) +
1

2
σ2(`)λx(t, `).

Also notice that

Wt(t, x) =

∫ x

`

λt(t, z) dz + g′(t).

Now, integrating with respect to x in (6), recalling the definition of W and
rewriting in terms of Wx, Wxx we have

0 = −rW (t, x) + rg(t) +Wt(t, x)− g′(t) +H(x, φ(t, x), λ(t, x))−H(l, φ(t, l), λ(t, l))

+
1

2
σ2(x)λx(t, x)− 1

2
σ2(l)λx(t, l)

= −rW (t, x) +Wt(t, x) +H(x, φ(t, x), λ(t, x)) +
1

2
σ2(x)λx(t, x)

= −rW (t, x) +Wt(t, x) +H(x, φ(t, x),Wx(t, x)) +
1

2
σ2(x)Wxx(t, x).

Given Hypothesis (A2), the function ci 7−→ H(x, (ci|c−i), λ) is concave and,
by the definition of λ,

Hci(t, x, (c
i|c−i), λ) = Hci(t, x, (c

i|c−i), L′(ci)) = L′(ci)− L′(ci) = 0.

Since critical points of concave functions are global maximum, we get that for
arbitrary admissible consumption strategies ci and for i = 1, . . . , N

0 = −rW (t, x) +Wt(t, x) + h(x, φ,Wx(t, x)) +
1

2
σ2(x)Wxx(t, x)

≥ −rW (t, x) +Wt(t, x) +H(t, x, (ci|φ−i),Wx(t, x)) +
1

2
σ2(x)Wxx(t, x).

Hence W is a solution of the HJB equation (4) given in Section 2. Moreover,
W (T, x) = S(x). This is easily seen as follows

W (T, x) =

∫ x

`

λ(T, z) dz + S(`) =

∫ x

`

L′(φ(T, z)) dz + S(`)

=

∫ x

`

L′(ϕ(z)) dz + S(`) = S(x),
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since ϕ = (L′)−1 ◦ S′. Now, condition (28), identity Vx = λ, together with the
continuity of W (t, x) at x = 0 proved above, imply that W is indeed the value
function of the problem and φi is the MPNE of player i, i = 1, . . . , N . This
is because V is polynomially bounded in x by (24), the definition of V given
in (23) as a primitive with respect to x of L′(φ(t, x)), and the bounds found
for φ, so we can apply the verification theorems of Dockner et al (2000) or
Fleming and Soner (2006). ut

Remark 1 The result is extended to the infinite horizon game with the help of
the usual transversality condition. We analyze only the stationary case. From
(10), the stationary MPNE φ is characterized by the EL equation

(
F (x)−Nφ(x) + (N − 1)R(φ(x)) + σ′(x)σ(x)

)
φ′(x)− 1

2
σ(x)2P (φ(x))φ′(x)2

+
1

2
σ(x)2φ′′(x) +R(φ(x))(r − F ′(x)) = 0.

(29)
Now, no terminal condition is imposed, but we still have to consider the bound-
ary condition φ(0) = 0. The value function can be expressed in terms of the
MPNE as

V (x) =

∫ x

`

L′(φ(z)) dz

+
1

r

(
L(φ(`)) + L′(φ(`))(F (`)−Nφ(`)) +

1

2
σ2(`)L′′(φ(`))φ′(`)

)
,

(30)
where 0 < ` < x is a fixed, arbitrary constant.

In the following result, Xc denotes the solution of (5) when the admissible
profile of strategies (c, . . . , c) is played.

Theorem 4 Assume that the conditions of Theorem 3 hold and that for all
c ∈ U , the transversality condition

lim sup
T→∞

Etx

{
e−r(T−t)V (Xc(T ))

}
= 0

holds. Then, a stationary and smooth solution φ of the Cauchy problem (29) is
an MPNE of the differential game. Moreover, the value function of the players
is given by (30).

Proof We can follow the same arguments as for the finite horizon case shown
in Theorem 3 above, by selecting a bounded function S fulfilling the hypothe-
ses required by that theorem, so that limT→∞ e−rTS(x) = 0. For a Markov
stationary strategy φ(x), the costate variable λ is also independent of time.
Taking the limit as T →∞ in the function g obtained from (23) in the proof
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of Theorem 3, we have

g(t, `) = lim
T→∞

∫ T

t

e−r(s−t)
(
H(`, φ(s, `), λ(s, `)) +

1

2
σ(`)2λx(s, `)

)
ds

=

(
H(`, φ(`), L′(φ(`))) +

1

2
σ(`)2L′′(φ(`))φ′(`)

)
lim
T→∞

∫ T

t

e−r(s−t) ds

=
1

r

(
H(`, φ(`), L′(φ(`))) +

1

2
σ(`)2L′′(φ(`))φ′(`)

)
.

We need the transversality condition of the theorem to apply a verification
theorem of Dockner et al (2000) or Fleming and Soner (2006) for the infinite
horizon case. ut

5 The stochastic Keynes-Ramsey Rule

In this section we describe how the EL equation (10) defines a stochastic KR
rule for the MPNE. This has the form of a forward–backward stochastic dif-
ferential equation (FBSDE)10. Note that the representation depends on the
forward process chosen. In this section we consider the stock process in equi-
librium, X, but in further sections we will change to another processes which
are more useful to our purposes.

Given a solution φ(t, x) of the PDE (10) satisfying φ(T, x) = ϕ(x), let
C(s) = φ(s,X(s)) for s ≥ t, where X satisfies the SDE of the stock variable
in equilibrium

dX(s) =
(
F (X(s))−NC(s)

)
ds+ σ(X(s)) dw(s), X(t) = x > 0, (31)

A solution of the stochastic KR rule we will show below, is a triplet (Y,C, Z)
of {Fs}s≥t–adapted processes.

Theorem 5 Assume that the hypotheses of Theorem 3 hold and that σ′′ is
bounded. Then, the symmetric MPNE is described by the stochastic KR rule
given by the forward SDE (31) and the backward SDE

dC(s)

C(s)
=
(
ρ(C(s))(F ′(X(s))− r) + (1−N)ρ(C(s))C(s) Z(s)

σ(X(s)) − σ
′(X(s))Z(s)

+ 1
2π(C(s))Z2(s)

)
ds+ Z(s) dw(s),

(32)

10 FBSDEs were introduced by Bismut (1973) for stochastic control problems and studied
with more generality in Pardoux and Peng (1990). FBSDEs play a central role in the state-
ment of the stochastic maximum principle, see Peng (1990), Yong and Zhou (1999) or Ma
and Yong (1999). FBSDEs in optimization models play the same role as the Hamiltonian
system for the state-costate variable in deterministic dynamics, that is, they constitute a
part of the necessary conditions for optimality. In our game, the forward part corresponds
to the new state Y and the backward part to the optimal strategy C. The definition of a
backward SDE is not straightforward, as the filtration of the Brownian motion is an increas-
ing family of σ-algebras, but the stochastic process C evolves in the opposite direction of
time. The measurability problems are overcome by introducing the process Z, which is an
integral part of the definition of the solution.



Euler-Lagrange equations of stochastic differential games 27

with final value
C(T ) = ϕ(X(T )),

where Z is a square–integrable {Fs}s≥t–adapted process. Moreover, Z is non-
negative a.s. in the case that both F and S are concave.

Proof Under the assumptions and by Theorem 2, there is a unique non-
negative classical solution φ(t, x) of equation (10) satisfying φ(T, x) = ϕ(x)
and φ(s, 0) = 0 for any s ≥ t. Consider the forward SDE (31). Since φ, F and
σ are uniformly Lipschitz, by Lemma 3.2 in Mao (1997), the SDE admits a
unique strong solution X(s), s ≥ t for all t ≥ 0, which satisfies X(s) > 0 a.s..

By Itô’s formula applied to C(s) = φ(s,X(s)) and using the EL equation
(10), we get (we omit the argument (s,X(s)) on φ and its derivatives, to
simplify notation)

dC(s) =
(
φt +

(
F (X(s))−Nφ

)
φx +

1

2
σ2(X(s))φxx

)
ds+ φxσ(X(s))dω(s)

=
(
R(φ)(F ′(X(s))− r) + (1−N)R(φ)φx − σ′(X(s))σ(X(s))φx

+
1

2
σ2(X(s))P (φ)φ2x

)
ds+ φxσ(X(s)) dω(s).

(33)
Defining Z(s) = σ(X(s))φx(s,X(s))/φ(s,X(s)) for s ≥ t ≥ 0, and recalling
that R = cρ, P = π/c, the above equality reduces to (32). Note that Z
is square–integrable and {Fs}s≥t–adapted by the regularity of the functions
involved. When T < ∞ the terminal condition for C at T comes from (11).
In the case of an infinite horizon, we follow the definition given in Ma and
Yong (1999), considering finite–horizon approximations where the terminal
condition for C is given by selecting previously a suitable bequest function S,
as explained in the sections above. Finally, since by Theorem 8 (below) φx ≥ 0,
we have Z(s) = σ(X(s))φx(s,X(s))/φ(s,X(s)) ≥ 0 a.s. ut

Equality (32) shows how consumption of each player is distributed in equi-
librium across time. The expected rate of growth in future consumption with
respect to current consumption is, for s ≥ t, t ≥ 0

Es

(
dC

C

)
=
(
ρ(C)(F ′(X)− r) + (1−N)ρ(C)C Z

σ(X) + 1
2π(C)Z2 − σ′(X)Z

)
ds.

(34)
Due to the presence of uncertainty, the rule is much more complex than in
the deterministic case. 11 Three additional summands appear, that depend

11 The deterministic KR rule or “modified Ramsey rule” is obtained setting N = 1 and
σ ≡ 0 in (33), to get

Ċ

C
= ρ(C)(F ′(X)− r),

where the (deterministic) process X satisfies

Ẋ = F (X)−NC.
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on Z, and collect the uncertainty effects. The second term, (1 −N)ρ(C)C Z
σ ,

shows how the number of players and the uncertainty interact; this summand is
negative when there is more than one player, and is larger in absolute value as
the number of players increases. The third summand, 1

2π(C)Z2, contains the
prudence attitude of the player. Since we are supposing that π > 0, uncertainty
speeds up mean consumption in comparison with the deterministic case. More
prudent agents prefer to plan higher mean increments in consumption than less
prudent ones. The fourth and last term, −σ′(X)Z, is sensitive to the variation
of instantaneous variance, σ′.

The backward-forward pair of equations (31) and (32) is useful is exploring
inverse problems, as that studied in Chang (1988) for the stochastic optimal
growth model. That is, given a consumption function, the issue is to determine
utility and recruitment/production functions that rationalize the consumption
function as optimal in the control problem.

We address here a related question: to determine the set of admissible
utilities for which the MPNE is linear in the infinite horizon game with linear
production and variance functions. As it is well known, CRRA utilities are in
this set. Are there any more? It comes as a surprise that the answer is positive.
To show this, let F (x) = Ax and σ(x) = σx, where the constants are positive.
Suppose that the MPNE is φ(x) = µx, with µ > 0. Note that C(s) = µX(s),
thus dC = µdX = µ(AX−NC)ds+µσXdw, or writing this equation in terms
of C, dC = (A−µN)Cds+σCdw. Thus, consumption is a geometric Brownian
motion along the equilibrium trajectory. In consequence, the expected mean
increment of consumption, which is given in (34), is constant, equal to ε ≡
A− µN . Let us compute this term. In the proof of Theorem 5, Z was defined
as Z = σ(X)φ′(X)/φ(X). In this case, we have Z = σ, constant. Then, from
(34) and the fact that C is a geometric Brownian motion we obtain the identity

(A− r)ρ(c) + (1−N)µρ(c) +
1

2
σ2π(c)− σ2 = ε. (35)

This gives a relationship between ρ and π, π = b− aρ, where

a =
2

σ2
(A− r + (1−N)µ), b = 2

ε+ σ2

σ2
.

Assume that a > 0, b > 1 and (b − 1)2 > 4a. The inequality a > 0 is true
for the one player case when A > r, but it also holds for N > 1 if A is large
enough. Hence we can establish the following theorem.

Theorem 6 Consider the infinite horizon game with linear recruitment and
instantaneous variance and with a and b given in (35) that satisfy 0 < a < 1,
b > 1 and (b− 1)2 > 4a. Then there exists utility functions with non-constant
elasticity of intertemporal substitution ρ and discount factors r > 0, such that
the linear rule, φ(x) = µx, is a MPNE of the game.

Proof To find L supporting the MPNE, we first use Lemma 2, that gives the
solution of the equation cρ′ + ρ = −1 + ρπ with π = b − aρ. The former



Euler-Lagrange equations of stochastic differential games 29

equality is, as established in Section 3.4, Footnote 9, the relationship between
ρ and π associated to an utility L. The latter equality comes from the opti-
mality conditions. After substitution, the ODE we get for ρ is the one studied
in Lemma 2. Now, we resort to Proposition 2, that assert the existence of L
if some assumptions hold. These assumptions are (16)-(18), which are auto-
matically fulfilled by ρ, as it was explained just after the proof of Lemma 2.
Other assumptions are θ > 0 and ∆ > 0 that were also proved in Section
3.4. It only remains to impose µ2 < µ1, that is, aη < 1. It is easy to see that
this is equivalent to b < 2 + a < 3. It is clear that φ satisfies the necessary
optimality conditions by construction. Let us check that it also satisfies the
sufficient conditions of Theorem 4. The equilibrium stock evolution is the ge-
ometric Brownian motion dX = (A−Nµ)Xds+ σXdω. Now, by Proposition
1 and 2, the utility function satisfies L′(c) = c−µ2/µ1(ψ1c

θ +µ1), with µ2 < µ1

and θ > 0. Then, all the hypotheses of Theorem 3 holds by taking a finite
horizon game with limiting function f(x) = x and suitable S. It only remains
to check the sufficient transversality condition. Computing the conditional ex-
pectation of e−rTV (X(T )) is easy thanks to (30) and the fact that X is a
geometric Brownian motion. In summary, once we replace µ2/µ1 = aη we find
two conditions to be fulfilled for the conditional expectation to converge to 0

(θ + 1− aη)(A−Nµ+
σ2

2
(θ − aη) < r,

(1− aη)(A−Nµ− σ2

2
aη) < r.

The first inequality implies the second one as soon as aη < 1 and A > Nµ−
σ2

2 aη. The definition of η was given above. ut

6 Comparative statics and further properties of the MPNE

The EL Equation, or some variations of it, is useful to reveal important proper-
ties of the symmetric MPNE. In this section, we study: i) the turnpike property
of the MPNE; ii) the monotonicity of the equilibrium consumption strategy
with respect to the resource stock; iii) the curvature of the equilibrium con-
sumption strategy; iv) the dependence with respect to the size of the uncer-
tainty; v) the dependence with respect to variations in the number of players
and with respect to the preference rate; and finally, vi) the issue of extinction.

6.1 Finite horizon approximations of the stationary MPNE

Now we investigate the turnpike properties of the game in the case of CRRA
preferences (but not necessarily the linear game, that is, F and σ do not need
to be linear). We prove next that for any smooth solution f(x) of the station-
ary EL equation, one can find bequest functions S such that the associated
finite horizon MPNE converges to f . This is useful in computing approximated
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solutions of the stationary EL equation based on well known methods for the
Cauchy problem. In what follows, we study the limit as T → ∞ of the solu-
tion of the EL equation for a finite horizon T , although we do not make the
dependence of φ(t, x) on T explicit so as to shorten notation.

Theorem 7 Consider the game with CRRA instantaneous utility function L
and α < 0. Suppose that f is a solution of the stationary EL equation (29).
Let S be any bequest function of the finite horizon game such that f serves
as a limiting function. Then, the solution of the finite horizon EL equation,
φ(t, x), converges to f(x) as T →∞.

Proof See Appendix A. ut
The reverse question, that is, whether the finite horizon MPNE φ(t, x)

converges to a solution of the stationary EL equation is more difficult. A
result in this direction is obtained below for the linear game.

Corollary 2 If φ is an MPNE for the linear game then

lim
T→∞

φ(t, x) = −β + γ

α
x,

where β = A + σ2(1 − δ)/2, γ = (r − A)/δ, α = −N + (N − 1)/δ, that is, it
converges to the stationary MPNE of the autonomous game.

Proof Notice that f(x) = −β + γ

α
x is a solution of the stationary EL equation

(29), thus the result is a consequence of Theorem 7, simply by taking this
limiting function f . ut

6.2 Monotonicity

Under mild assumptions, the MPNE is monotonous non-decreasing in the asset
stock: the higher the stock of the stochastic productive asset, the higher the
consumption is in equilibrium. Once this is shown, we prove that the value
function of the players is concave. A direct proof of this fact in a differential
game framework (even in the symmetric case) does not seem to follow easily
from standard arguments.

Theorem 8 Assume that the assumptions of Theorem 2 hold and that both
F and S are concave. Then the MPNE is non–decreasing in x.

Proof See Appendix A. ut
Corollary 3 Assume that the assumptions of Theorem 8 hold. Then the value
function is concave in x.

Proof This follows from the shadow price characterization given in the proof
of Theorem 3 and from Theorem 8 on the monotonicity of the optimal con-
sumption program, since

Vxx(t, x) =
∂

∂x
λ(t, x) =

∂

∂x
L′(φ(t, x)) = L′′(φ(t, x))φx(t, x) ≤ 0.

ut
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6.3 Concavity of the MPNE

In this section we study whether the MPNE is concave with respect to the asset
level. Carroll and Kimball (1996) proved concavity of the consumption function
in a one-player game of finite horizon and discrete time, where uncertainty
comes from three sources: labor income, gross interest rate and discount factor.
The family of utility functions considered by those authors were the CRRA
class, strictly increasing, concave, and satisfying L′′′ ≥ 0. We limit ourselves
to the linear game, but allowing for general functions S. Note that Carroll and
Kimball (1996) choose S = 0. Another difference, of course, is that we work
in the continuous-time case, with Brownian uncertainty. To prove concavity of
the equilibrium consumption function we will impose that ϕ is concave. This
implies a condition both for the instantaneous utility function and the bequest
function that is provided in Lemma 3.

Theorem 9 Consider the linear game and suppose also that ϕ is concave.
Then the MPNE is concave with respect to x.

Proof See Appendix A. ut

6.4 Dependence of the MPNE on the uncertainty

In this section we study the way the symmetric MPNE depends on the size of
uncertainty. We will show that the MPNE is monotonous increasing in σ, more
precisely, we prove that under our assumptions plus a technical hypothesis to
allow a change of measure, σ1 ≤ σ2 implies φσ1 ≤ φσ2 , where we denote φσi the
MPNE strategy when the diffusion coefficient σ ∈ Σ, with Σ defined below.
To obtain this result is not straightforward, as the equilibrium is driven by
a backward SDE, which is coupled with a forward SDE. In our analysis we
will use a variation of the KR rule found in Section 5 that represents the
equilibrium. Let µ = F

σ + σ′

2 and let Σ = {σ : R+ −→ R+ : µ bounded}. For
σ ∈ Σ, let Y σ be the process that satisfies (we omit the time argument to
simplify notation)

dY (s) = (F (Y ) + (σσ′)(Y )) ds+ σ(Y ) dw(s), Y (t) = x.

Let us define gN (c) = −Nc+ (N − 1)R(c). Since we are supposing in (A3)
(a) (see also (12)) that α+ = ρ+(N − 1) − N < 0 and R(c) ≤ ρ+c, then
gN (c) ≤ 0 for all N ≥ 1 and all c ≥ 0.

Along Y σ, the equilibrium satisfies the BSDE

dC(s) =

(
R(C)(F ′(Y )− r) +

1

2
P (C)C2Z2 − gN (C)Z

σ(Y )

)
ds+ Zdw(s),

C(T ) = ϕ(Y (T )),

(36)

where Z is given by Z = σ(Y σ(s))φx(s, Y σ(s)) and φ is the solution of the
EL equation. The proof follows the same lines as the proof of the KR rule in
Theorem 5.
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Theorem 10 If both F and S are concave, and ϕ is monotonous non-decreasing,
then the MPNE is monotonous non decreasing with respect to σ ∈ Σ.

Proof See Appendix A. ut

In the limit, as the diffusion coefficient tends to zero, and assuming that
an MPNE exists of the deterministic game and that convergence holds, we get
that the players are more conservative in the deterministic case than when
some noise is present. This conclusion holds at every pair of date and stock of
the resource, and not only in terms of expected mean growth. Thus, in this
model, independently of the sign of the relative prudence index, the players
consume at a higher rate as the uncertainty is larger (as measured by the
function σ). This result also holds for the one-player case.

6.5 Variation in the number of players and on the time preference

Now we will study the dependence of the MPNE with respect to variations in
the number of players. The effect of the number of players on the consump-
tion effort depends on the marginal substitution rate ρ(c). When ρ(c) > 1,
consumption increases with N , when ρ(c) < 1 it decreases, and when ρ(c) = 1
(the logarithm case), it is independent of the number of players. We will use
the KR rule to show these facts.

Theorem 11 Suppose that the hypotheses of Theorem 5 hold and let N1 ≤ N2.
Then φN1 ≤ φN2 if ρ(c) ≥ 1 for any c ≥ 0, and φN1 ≥ φN2 if ρ(c) ≤ 1 for any
c ≥ 0.

Proof See Appendix A. ut

In the linear game above the MPNE is non–decreasing with the number of
agents if and only if δ ≤ 1.

Theorem 12 Suppose that the hypotheses of Theorem 5 hold. If r1 ≤ r2, then
φr1 ≤ φr2 .

Proof See Appendix A. ut

6.6 Extinction

We explore here the question of extinction of the asset in the long run. This
has already been investigated in Clemhout and Wan (1985) in the model with-
out uncertainty. These authors proved that with the assumptions L(0) = 0,
L′(0) ∈ (0,∞), L′′ < 0, Nr < F ′(0) < ∞, there exists an x̃ > 0 such that
in equilibrium, any initial stock level x ∈ (0, x̃) declines to extinction in finite
time. This is not true under cartelization. Our main finding is that uncertainty



Euler-Lagrange equations of stochastic differential games 33

strengthens the competition of the players compared to the deterministic case,
and the resource declines to extinction with probability 1 from any initial level
of the resource as the time horizon tends to infinity if the number of players
is large enough. Mitra and Sorger (2014) studies a discrete version of the
deterministic model with specific functional forms, and find a necessary and
sufficient condition for the resource not become extinct in equilibrium.

For our purposes, we consider linear F (x) = Ax and σ(x) = σx, but an
arbitrary utility function L satisfying our standing assumptions. For a solution
φ(t, x) of the EL equation (10) we know from Theorem 2 that

k−f(x) ≤ φ(t, x) ≤ k+f(x),

whenever f is a suitable limiting function. Recall the definition of the constants
k− and k+ just above Theorem 3.

k− = min

{
m,− β−

α− sup(0,∞) f
′

}
, k+ = max

{
M,− β+

α+ inf(0,∞) f ′

}
,

where α−, α+ are defined in (12) and β− and β+ in Assumption (A5) (c).
Notice that, given that both F and σ are linear, we can also take f(x) = x.
Hence the MPNE satisfies

k−x ≤ φ(t, x) ≤ k+x (37)

for any t ≤ T , for any T and for any x ≥ 0. We are free to select a bequest
function S such that the associated ϕ satisfies the standing assumption, since
we are only interested in the limiting behavior of the solution. The asset follows
the SDE

dX(s) = (AX(s)−Nφ(s,X(s))) ds+ σX(s) dw(s), X(t) = x.

Let us denote by Xφ(s; t, x) the unique strong solution. By (37), the drift is
bounded by

AX −Nc ≤ (A−Nk−)X.

Consider the SDE

dX(s) = (A−Nk−)X ds+ σX dw(s).

By the classical Comparison Theorem for SDEs, Ikeda and Watanabe (1977),
we have 0 ≤ Xφ ≤ X a.s. Hence, if the SDE for X is asymptotically stable,
the same happens for the SDE for X.

Proposition 4 Suppose that

A−Nk− <
σ2

2
. (38)

Then the equilibrium X ≡ 0 is asymptotically stable in the large, i.e. it is
stochastically stable

lim
x→0

P{sup
s≥t
|X(s; t, x) ≥ 0|} = 0
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and for any initial level of stock x > 0

P{ lim
T→∞

X(T ; t, x) = 0} = 1.

Proof The proof is a direct application of Example 2.7 in Mao (1997). For
X = 0 to be asymptotically stable, it suffices that the drift term should be
smaller than σ2/2. ut

Inequality (38) depends on several parameters of the game and on the
number of players. Since −β−/α− tends to 0 as N →∞ because α− → 0, we
have k− = −β−/α− for a big enough N . Then, for a large number of players
N

A−Nk− = A+
β−N

(a− − 1)N − a−
.

This expression is decreasing with N and in the limit as N → ∞ inequality
(38) is

A+
β−

a− − 1
<
σ2

2
.

7 Conclusions

The purpose of this paper has been twofold. On the one hand, to provide
an easy method to obtain the EL equations of a stochastic differential game
where the uncertainty is modeled as a diffusion process and players’ decisions
cannot influence the size of the uncertainty. On the other hand, to carry out
a rigorous study of a symmetric stochastic dynamic game in continuous time
where players consume from a productive asset in a noncooperative way. The
results obtained prove the usefulness of the EL equations in proving the exis-
tence and uniqueness of the MPNE in the game mentioned above, under quite
general assumptions. Moreover, it has also been shown how the EL equations
are specially suitable to make comparative statics exercises of the equilibrium
and to answer important questions of the nature of the dependence of the
equilibrium on uncertainty, its curvature and the issue of extinction. As we
show, EL equations are equivalent to a stochastic KR rule that is a natu-
ral extension of the deterministic one and that shows in a neat way how the
uncertainty changes the consumption-saving decisions of the players with re-
spect to the deterministic case. To our knowledge, most of these questions are
completely answered for the first time in this paper, thanks to the approach
based on the EL equations. Our methods of proof combine methods of par-
tial differential equations to show properties that concern first or second order
derivatives of the consumption function, as well as the convergence of finite
horizon approximations, together with comparison theorems of FBSDEs for
making comparative statics.

With the exception of Sorger (1998), which proves the existence of MPNE
in the deterministic infinite horizon game (but, as explained in the paper,
with just the opposite hypothesis that we impose about the elasticity of the
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marginal utility, and assuming a specific recruitment function), other inves-
tigations focus on a particular form of the utility function, the recruitment
function or the diffusion coefficient.

It is by no means trivial to prove the existence of the Nash equilibrium
with the property of sub game perfection, even for what we can consider by
now is a classical game that has received a lot of attention over the last few
decades. As shown in the paper, in our non-existence result of the MPNE, one
cannot freely work with any number of players and any strictly concave and
smooth utility function, as it could be that no MPNE exists unless one sets an
upper bound in the maximal consumption rate of the players. To address these
questions seriously, avoiding heuristic claims that could not be supported on
the existence of the object that is analyzed, it seems unavoidable to impose
the correct amount of smoothness in the functions defining the game. Table 1
below clarifies the generality with which we attain our results. For instance,
existence and uniqueness of the MPNE is obtained under our the general
hypotheses imposed in the paper (A1)-(A5), but our conclusions about the
dependence on uncertainty requires the additional assumption of both the
recruitment function and bequest function to be concave. The rest of the table
has a similar interpretation.

Table 1 List of results obtained and assumptions employed

Result Assumptions on functions L, S, F , σ, ϕ
Existence, uniqueness General
Turnpike L CRRA
Monotonicity S and F concave
Concavity of MPNE Linear game, ϕ concave and non-decreasing
Dependence on uncertainty S and F concave
Dependence on N and r General
Extinction F and σ linear

It is our hope to have had success conveying other researches about the
usefulness of the EL equations approach to analyze models from economics,
and that they include it as an additional tool for economic analysis. Our aim
for the future is to study other relevant models with this technique, as well as
to extend the method to problems where the players influence the size of the
uncertainty through their decisions.

A Proofs

In this appendix we collect the proofs of the results that are not shown in the body text. It
also include some auxiliary results that are used in the proofs.

A.1 Proof of Theorem 2

Let RT = [0, T ]× (0,∞). We first state an auxiliary result.
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Existence of solutions to quasilinear parabolic PDEs.

Theorem 13 There exists at least one bounded solution in RT of the Cauchy problem

uτ −
∂

∂x
a(τ, x, u, ux) = b(τ, x, u, ux),

with initial condition
u(0, x) = u0(x), x > 0.

if all of the following conditions are satisfied.

C1.- u0 is of class C4 and bounded.
C2.- Functions a and b are of class C3 and C2, respectively.
C3.- There are nonnegative constants b1 and b2 such that for all x and u(

b(τ, x, u, 0) +
∂

∂x
a(τ, x, u, 0)

)
u ≤ b1u2 + b2.

C4.- For all M > 0, there are constants µ2(M) ≥ µ1(M) > 0 such that, if τ , x and u are
bounded in modulus by M , then for arbitrary p

µ1(M) ≤
∂

∂p
a(τ, x, u, p) ≤ µ2(M)

and (
|a|+

∣∣∣∣ ∂a∂u
∣∣∣∣) (1 + |p|) +

∣∣∣∣∂a∂x
∣∣∣∣+ |b| ≤ µ2(M)(1 + |p|)2.

The problem admits no more than a classical solution in RT that is bounded together with
its derivatives of first and second orders if the following additional conditions hold.

C5.- For all M > 0 there are non negative constants ν1(M) and ν2(M) such that

max
(t,x)∈RT
|u|,|p|≤M

∣∣∣∣ ∂2a∂p∂u
,
∂2a

∂p2
,
∂A

∂p

∣∣∣∣ ≤ ν1(M),

min
(t,x)∈RT
|u|,|p|≤M

∂A

∂u
≥ −ν2(M),

where

A = a−
∂a

∂u
p−

∂a

∂x
.

Proof The result is a consequence of Theorem 8.1 of Ladyzhenskaya et al (1969), the only
difference being that we have set the problem in [0, T ] × (0,∞) instead of [0, T ] × R and
that we require more smoothness. The method of proof of Theorem 8.1 in Ladyzhenskaya
et al consists in considering truncated problems on the strip [0, T ]× [1/n, n] with boundary
conditions un(0, x) = u0(x) for all x ∈ [1/n, n] and12 un(t, 1/n) = u0(1/n), un(t, n) = u0(n)
for all t ≥ 0. These solutions converge smoothly to a solution u of the original equation as
n→∞. ut

Motivated by the necessity to drop the boundedness of the data defining the game, we
will consider the EL equation (10) for the function u = φ/f written in the divergence form

uτ −
∂

∂x
a(x, ux) = b(x, u, ux), (39)

12 The selection of the boundary conditions at 1/n and n can be done differently, with the
only requisite of being compatible with u0(x), that is, conserving continuity and smoothness;
in the proof below we will use a different set of boundary conditions still compatible.
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where τ = T − t and

a(x, p) =
σ(x)2

2
p,

b(x, u, p) =
(
F −Nuf + (N − 1)R(uf) +

f ′

f
σ2
)
p

+
(
F −Nuf + (N − 1)R(uf) + σ′σ

)
u
f ′

f

+
1

2
σ2u

f ′′

f
−
σ2

2

P (uf)

f
(pf + uf ′)2 +

r − F ′

f
R(uf).

The initial condition is

u(0, x) = ϕ0(x) =
ϕ(x)

f(x)
. (40)

Note that even if the initial condition ϕ0 is now bounded by assumption, still we cannot
apply the above theorem directly. The difficulties are two: (i) the function σ vanishes at
x = 0, thus it is not uniformly bounded away from zero; and (ii) the function P is in
general not defined at 0 and in fact limc→0+ P (c) = ∞ for problems with CRRA utility,
where P (c) = (1 + δ)/c. To deal with (i) we consider the PDE (39) on bounded subintervals
In = [1/n, n], n = 1, 2, . . ., and then we take a limit as n → ∞, while for (ii) we will prove
that the solutions un found in the subintervals above remain uniformly bounded away from
0, in the sense that there exists a lower bound lm > 0 such that un ≥ lm for all n ≥ m for
all x ∈ Im. As a byproduct of the proof, we obtain the estimates claimed in the theorem.

– C.1 is fulfilled, since ϕ0(x) = ϕ(x)/f(x) is bounded and smooth on (0,∞), by assump-
tion.

– C.2 holds, as the function a has the required smoothness. As explained above, we will
prove below that u never vanishes on (0,∞), thus the term P (uf) does not pose any
problem at all for the smoothness of function b.

– C.3. There are constants b1 and b2 such that

b(x, u, 0)u =
(
F −Nuf + (N − 1)R(uf) + σ′σ

)
u2
f ′

f

+
1

2
σ2u2

f ′′

f
−
σ2

2

P (uf)

f
(uf ′)2u+

r − F ′

f
R(uf)u ≤ b1u2 + b2

(since a(x, 0) = 0). To see this, note that, thanks to our assumptions,

b(x, u, 0)u ≤ α+u3f ′ +

(
(F + σ′σ)

f ′

f
+

1

2
σ2 f

′′

f
−
π−

2
σ2

(
f ′

f

)2

+ γ+

)
u2

< α+( min
x∈(0,∞)

f ′)u3 + β+u2 ≤ β+u2,

since α+ < 0 and the solution u > 0 (this will be proved below).
– C.4, first part, is also fulfilled, as

∂a(x, p)

∂p
=
σ2(x)

2

is positive for x > 0 and continuous, thus it is bounded away from 0, as well as bounded
above in any compact subset [1/M,M ] of (0,∞)13. The second part of C.4 is a local

13 Note that what we require here is µ1(M) ≤ ∂a(x,p)
∂p

≤ µ2(M) for x belonging to a

compact set of the kind [1/M,M ] and not simply to x ≤ M . This is a slight variation that
is not problematic in this framework.
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assumption, that also holds because function |b| is quadratic in p, with continuous
coefficients, and thus bounded on compact subsets of (0,∞); the same is true for(

|a|+
∣∣∣∣ ∂a∂u

∣∣∣∣) (1 + |p|) +

∣∣∣∣∂a∂x
∣∣∣∣ =

σ2(x)

2
|p|(1 + |p|) + |σ(x)σ′(x)||p|,

which is also quadratic in p, and since both σ and σ′ are continuous and thus they are
bounded in compact subsets of [0,∞).

– C.5. Both σ and σ′ are continuous, and therefore bounded over any compact interval of
the state space, achieving uniqueness of the bounded solution

We now show that we can construct a solution u > 0 of the PDE (39) as limit of positive
truncated solutions un in [0, T ] × [1/n, n] as n → ∞. Then, C.2 holds, as P is smooth in
(0,∞). In fact we prove more than that, as we obtain upper and lower estimates for the
solution. The latter will imply in particular that the solution is positive for x > 0.

Let the PDE (39) with initial condition (40) and boundary conditions at the extreme
points of the interval In given by

un(τ, 1/n) =
β+eτβ

+
ϕ0(1/n)

α+ϕ0(1/n)f ′(1/n)(1− eτβ+ ) + β+
,

un(τ, n) =
β+eτβ

+
ϕ0(n)

α+ϕ0(n)f ′(n)(1− eτβ+ ) + β+
.

(41)

The reason for this particular selection of the boundary conditions is shown next. Formu-
lating these approximating problems, we have eliminated the degeneration in the truncated
equation. It is easy to check that all conditions in Theorem 8.1 of Ladyzhenskaya et al (1968)
are fulfilled in a small neighborhood of τ = 0, since ϕ0(x) is bounded away from zero in In
and hence a solution un of the truncated problem exists which does not vanish. From this
our aim is to extend this truncated solution to all [0, T ] and after this, to get the solution
φ(t, x) with initial condition φ(0, x) = ϕ(x) as the smooth limit of un(τ, x)f(x) as n→∞.
As explained above, this is the procedure used in Ladyzhenskaya et al (1968). We show next
that the local solution can be extended in time and space. To this end we define

Mn(τ) = max
y∈[1/n,n]

un(τ, y).

By Danskin’s Theorem, function Mn is almost everywhere differentiable, and at points of
differentiability, the derivative Ṁn(τ) = un,τ (τ, xn(τ)), where un(τ, xn(τ)) = Mn(τ).

We prove that for any τ

Mn(τ) ≤
β+eτβ

+
Mn(0)

α+(minIn f
′)Mn(0)(1− eτβ+ ) + β+

. (42)

where Mn(0) = supx∈In ϕ0(x). Suppose, by way of contradiction, than Mn(τ0) is greater
that the right hand side of (42) for some τ0 > 0. Let τ0 be the inferior of all the τ0s satisfying
this property, and hence, by continuity of Mn, Mn(τ0) equals the right hand side of (42).
Then xn(τ) is interior to In for every τ ∈ [τ0, τ0], due to the boundary conditions (41).
In consequence, un,x(τ, xn(τ)) = 0 and un,xx(τ, xn(τ)) ≤ 0 for any τ ∈ [τ0, τ0]. Hence,
(∂/∂x)(σ2un,x)|(τ,xn(τ)) ≤ 0. This information, used in the equation (39) for νn, provides
the following chain of inequalities

Ṁn(τ) ≤ b(xn(τ),Mn(τ), 0)

=
(
F −NfMn(τ) + (N − 1)R(fMn(τ)) + σ′σ

)
Mn(τ)

f ′

f

+
1

2
σ2Mn(τ)

f ′′

f
−

1

2
σ2 P (fMn(τ))

f
(Mn(τ)f ′)2 +

r − F ′

f
R(fMn(τ))

≤ α+M2
n(τ)f ′ +

(
(F + σ′σ)

f ′

f
+

1

2
σ2 f

′′

f
−
π−

2
σ2

(
f ′

f

)2

+ γ+
)
Mn(τ)+

< α+(min
In

f ′)M2
n(τ) + β+Mn(τ), a.e. τ.

(43)
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We have used the definitions of α+ and β+ done in Assumption (A3) and (A5), respectively,
and the fact that α+ < 0. From this differential inequality of Ricatti we get the estimate

Mn(τ) ≤
β+e(τ−τ0)β

+
Mn(τ0)

α+(minIn f
′)Mn(τ0)(1− e(τ−τ0)β+

) + β+
.

Once the expression for Mn(τ0) =
β+eτ0β

+
Mn(0)

α+(minIn f
′)Mn(0)(1−eτ0β

+
)+β+

, which holds by our

contradiction argument is substituted into (A.1), inequality (42) easily follows.
Following the same technique we get the lower estimate. Consider the solution vn of the

PDE with the boundary conditions

vn(τ, 1/n) =
β−eτβ

−
ϕ0(1/n)

α−ϕ0(1/n)f ′(1/n)(1− eτβ− ) + β−
,

vn(τ, n) =
β−eτβ

−
ϕ0(n)

α−ϕ0(n)f ′(n)(1− eτβ− ) + β−
.

and
mn(τ) = min

y∈[1/n,n]
vn(τ, y),

with the minimum attained at some yn(τ). Similar arguments as done above for the maxi-
mum lead to the estimate

mn(τ) ≥
β−eτβ

−
mn(0)

α−mn(0)(maxIn f
′)(1− eτβ− ) + β−

. (44)

as follows. By way of contradiction one finds

ṁn(τ) ≥ g(yn(τ),mn(τ), 0) ≥ α−(max
In

f ′)m2
n(τ) + β−mn(τ), a.e. τ.

Reasoning much as for the case of Mn, one gets the estimate (44) easily. Thus, we have
shown that the local solution is strictly uniformly bounded away from zero in the intervals
In, and that it is also bounded above. Since this fact is independent of τ , as well as the
upper bound obtained above, the solution can be extended up to the whole [0, T ], for any
T .

Hence, since vn → v, we have that v is bounded away from zero, and hence v is a
solution of the Cauchy problem , since all the conditions of the Theorem of Ladyzhenskaya
et al (1968) are fulfilled. Taking limits as n→∞ one has

φ(t, x)

f(x)
= u(T − t, x) ≥ m(T − t) ≥

β−e(T−t)β
−
m(0)

α−m(0)(sup(0,∞) f
′)(1− e(T−t)β− ) + β−

.

By the above estimates the limit φ(t, x) = u(T−t, x)f(x) is a solution of the Cauchy problem
(10) satisfying

φ(t, x)

f(x)
= v(T − t, x) ≤M(T − t) ≤

β+e(T−t)β
+
M

α+(inf(0,∞) f
′)M(1− e(T−t)β+

) + β+
,

since Mn(0)→M as n→∞, and inf(0,∞) f
′ ≤ minIn f

′. ut

A.2 Proof of Theorem 7

With CRRA preferences, ρ+ = ρ− = ρ = 1/δ, α+ = α− = α and π+ = π− = b = 1 + δ.
See the definition of these constants in Section 3, Assumption (A3) and in (12). See also
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the computations done after Definition 4. We will follow the proof of Theorem 2, using the
same notation. Retaking inequality (43) in the aforementioned proof, in the case of CRRA
preferences we have

Ṁn(τ) ≤ b(xn(τ),Mn(τ), 0)

=
(
F −NfMn(τ) + (N − 1)afMn(τ)) + σ′σ

)
Mn(τ)

f ′

f

+
1

2
σ2Mn(τ)

f ′′

f
−

1

2
σ2 b

f2Mn(τ)
(Mn(τ)f ′)2 +

r − F ′

f
Mn(τ)a

≤ αf ′M2
n(τ) +

(
(F + σ′σ)f ′ +

1

2
σ2f ′′ −

1

2
σ2 b

f
f ′2 + a(r − F ′)f

)Mn(τ)

f

Since f is solution of the stationary EL equation (10) with CRRA preferences, then

(F + σ′σ)f ′ +
1

2
σ2f ′′ −

1

2
σ2 b

f
f ′2 + (r − F ′)af = −αff ′.

Plugging this into the inequality above it simplifies to

Ṁn(τ) ≤ αf ′M2
n(τ)− αf ′Mn(τ) ≤ α(inf

In
f ′)M2

n(τ)− α(sup
In

f ′)Mn(τ).

Hence

Mn(τ) ≤
Mn(0)e−τα(supIn f

′)

−Mn(0)(1− e−τα(supIn f ′)) + 1
.

A similar computation for the minimum shows

mn(τ) ≥
mn(0)e−τα(infIn f

′)

−mn(0)(1− e−τα(infIn f ′)) + 1
.

Notice that in the former case f ′ is evaluated at the point where un attains a maximum
in In = [1/n, n], say xn, whereas in the latter case it is at the point where un attains a
minimum, say yn. Thus,

mn(0)e−τα(infIn f
′)

−mn(0)(1− e−τα(infIn f ′)) + 1
≤ un(t, x) ≤

Mn(0)e−τα(supIn f
′)

−Mn(0)(1− e−τα(supIn f ′)) + 1
.

Taking the limit as n tends to ∞ and since un(t, x)→ φ(t, x)/f(x) as n→∞, we find

me−τα(infI f
′)

−m(1− e−τα(infI f ′)) + 1
≤
φ(τ, x)

f(x)
≤

Me−τα(supI f
′)

−M(1− e−τα(supI f ′)) + 1
.

As T →∞, τ →∞ and one finally find that φ(t, x) converges to f(x). ut

A.3 Proof of Theorem 8

We follow the same scheme of proof as in theorems 2 and 7. Notice that the hypotheses of
the theorem imply ϕ′(x) = S′′(x)/L′′(S′(x)) ≥ 0. Now, derive the EL Equation (10) with
respect to x and let v = φx. Then w solves the Cauchy problem

vτ −
1

2

∂

∂x
(σ(x)2vx) = gx(x, φ, v) + vgc(x, φ, v) + vxgv(x, φ, v)

+ vσ′(x)2 + vσ(x)σ′′(x) + vxσ(x)σ′(x).

v(0, x) = ϕ′(x) ≥ 0.
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Function g is

g(x, c, v) = (F (x)−Nc+ (N − 1)R(c))v −
1

2
σ(x)2P (c)v2 + (r − F ′(x))R(c).

We will follow a similar strategy of proof as in Theorem 2, considering truncated intervals for
the variable x, In = [1/n, n] and the solution vn(τ, x) in [0, T ]× In satisfying the boundary
conditions

vn(τ, 1/n) = ϕ′(1/n) > 0, vn(τ, n) = ϕ′(n) > 0.

Let νn(τ) = minx∈In vn(τ, x). A reasoning by contradiction, assuming the existence of τ0
satisfying νn(τ0) < νn(0), will lead to a contradiction as follows. Let τ0 be the inferior of
all the τs satisfying this property; by continuity of νn, νn(τ0) = νn(0). Then we obtain the
inequality

ν̇n ≥ gx(x, φ, νn) + νn
(
gc(x, φn, νn) + σ′(x)2 + σ(x)σ′′(x)

)
.

We have used the same arguments as those used in the proof of Theorem 2, hence we do not
repeat it here. The notation φn is used for the solution of the EL equation (10) in [0, T ]×In.
The term φn(τ, ζ(τ)), where ζ(τ) minimizes vn over In, does not pose any problem at all.
Given that gx(x, c, v) = v

(
F ′(x)− vσ(x)σ′(x)P (c)

)
− F ′′(x)R(c), we have

ν̇n ≥ −F ′′(x)R(φn)

+ νn
(
F ′(x)− νnσ(x)σ′(x)P (φn) + gc(x, φn, νn) + σ′(x)2 + σ(x)σ′′(x)

)
,

with νn(τ) = 0. Since F ′′ is concave and R is non-negative, −F ′′(x)R(c) ≥ 0, thus

νn(τ) ≥ νn(τ0)e
∫ τ
τ0
{··· } dτ

= 0 ∀τ ∈ [τ0, τ0],

in contradiction with νn(τ0) < 0. Hence 0 ≤ νn(τ) ≤ vn(τ, x) for all τ , x ∈ In, and then the
limit function φx(τ, x) ≥ 0. ut

A.4 Proof of Theorem 9

We first establish a lemma about the concavity of the consumption rate at the final time
T . It is established for general L, not only in the class CRRA. In the lemma, ρ{} stands
for the elasticity of the marginal utility and π{} for the relative prudence index of a given
utility function. For the linear game, the lemma implies that ϕ is concave if and only if the
bequest function S satisfies

S′(x)S′′′(x)

S′′2(x)
≥ 1 +

1

δ
.

Lemma 3 ϕ′′ ≤ 0 if and only if for all x > 0

ρS(x)πS(x) ≥ ρL(ϕ(x))πL(ϕ(x)).

Proof Deriving twice in L′(ϕ(x)) = S′(x) we get

L′′(ϕ(x))ϕ′(x) = S′′(x),

L′′′(ϕ(x))ϕ′(x)2 + L′′(ϕ(x))ϕ′′(x) = S′′′(x).

Solving for ϕ′′(x) and imposing ϕ′′(x) ≤ 0 we obtain the inequality (we eliminate arguments)

S′′′

S′′2
≥
L′′′

L′′2

or equivalently, multiplying both sides of the inequality by S′ > 0(
−xS′′′

S′′

)(
−S′

xS′′

)
≥
(
−ϕL′′′

L′′

)(
−S′

ϕL′′

)
.

Noting that S′ = L′(ϕ), and plugging this equality into the right hand side of the inequality
above, we obtain the claim of the lemma. ut
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We now proceed with the proof of Theorem 9 with the same techniques as those used
in the proofs of Theorems 2 and 8, deriving twice in the EL equation (10) to find a PDE for
φxx. We refer the reader to the proofs of those theorems for filling in the missing details.
Deriving twice in (10) we get

(φxx)τ −
∂

∂x

(
σ2x2

2
φxxx

)
= j(x, φ, φx, φxx, φxxx)

where the function j is defined as

j(x, c, v, w, z) = w

(
3σ2 + 2F ′(x) + 3αv +

r − F ′(x)

δ
− 4σ2x

1 + δ

c
v +

5

2
σ2x2

1 + δ

c2
v2 − σ2x2

1 + δ

c
w

)
− σ2v2

1 + δ

c

(
1−

xv

c

)2
− F ′′′(x)

c

δ
+ F ′′(x)

(
1−

2

δ

)
v

+

(
2σ2x+ F (x) + gN (c)− σ2x2

1 + δ

c
v

)
z.

Recall that in the CRRA case, α = −N + (N − 1)/δ. Following the same method of proof
as in the above referenced theorems, and defining wn as the solution of the PDE above in
the interval In, we get

wn,τ −
∂

∂x

(
σ2x2

2
wn,x

)
= j(x, φn, φn,x, wn, wn,x). (45)

Here, φn denotes the restriction of φ to [0, T ]× In. Let ωn(τ) = maxIn wn(τ, x). Reasoning
by contradiction supposing that ωn(τ) > 0 at some τ > 0, one has that wn,x(τ) = 0 and
∂
∂x

(
σ2x2

2
wn,x

)
≤ 0, thus plugging this into equation (45) we get

ω̇n ≤ ωn {· · · } − σ2φ2n,x
1 + δ

φn

(
1−

xφn,x

φn

)2

− F ′′′(x)
φn

δ
+ F ′′(x)

(
1−

2

δ

)
φn,x.

In the linear game F ′′ = F ′′′ = 0, hence the second summand in the above expression is
non positive. Given that ωn(0) = sup[0,∞) ϕ

′′(x) ≤ 0 is also non–positive, we arrive to a

contradiction, because it is never possible to have ωn(τ) > 0 from the above estimate for
ω̇n. ut

In the following proofs, recall that gN (c) = −Nc+ (N − 1)R(c).

A.5 Proof of Theorem 10

Let us show that if σi ∈ Σ, i = 1, 2 and σ1 ≤ σ2, then Y σ1 ≤ Y σ2 a.s. Clearly, for σ ∈ Σ,
µ(Y (s)) satisfies the Novikov condition and then

M(s) = exp

{∫ s

t
µ(Y (a))d(a)−

1

2

∫ s

t
µ2(Y (a))da

}
, s ∈ [t, T ]

is a P-martingale, where P is the objective probability measure. Define now the probability
measure P̃ by

dP̃

dP
= M(T ).

It is known that P̃ is absolutely continuous with respect to P. By Girsanov’s Theorem,
ω̃(s) = ω(s)−

∫ s
t µ(Y (a))d(a) is a P̃-Brownian motion and, in the new measure, Y satisfies

dY (s) =
1

2
σ(Y (s))σ′(Y (s))ds+ σ(Y (s))dw(s).
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Now, given that 0 < σ1 ≤ σ2, it holds that
∫ y
x

dz
σ1(z)

≥
∫ y
x

dz
σ2(z)

for all y ≥ x, which is the

sufficient condition of Example 2 of Zhiyuan (1984) assuring Y σ1 ≤ Y σ2 for every s ∈ [t, T ],

P̃-a.s., whence P-a.s. Then ϕ(Y σ1 (T )) ≤ ϕ(Y σ2 (T )) P-a.s., since ϕ is non-decreasing by
hypothesis.

Now, let us define f i(ω, s, C, Z) as the drift term in the backward SDE for C in (36)
when the forward process is Y σi (s), i = 1, 2, that is

f i(ω, s, C, Z) = C

(
ρ(C)(F ′(Y σi )− r) +

1

2
π(C)Z2 −

gN (C)Z

σ(Y σi )

)
,

as well as ϕi(T ) = ϕ(Y σi (T )). In the above, ω denotes an element of the sample space Ω
where the probability P is defined, in order to stress the dependence of the drift term with
respect to the stochastic process Y σi . Let also (C1, Z1), (C2, Z2) be solutions of the BSDE
(36) when σ = σi, i = 1, 2. We can write (36) in integral form

Ci(s) = ϕi −
∫ T

s
f i(ω, v, C(v), Z(v))dv −

∫ T

s
Zi(v)dw(v).

Let us check that −f1(ω, s, C2, Z2) ≤ −f2(ω, s, C1, Z1). Note that there are two terms

that depend on i in the definition of f i: one is − gN (C)Z
σ(Y σi )

; we have already proved that

σ(Y σ1 ) ≤ σ(Y σ2 ). Since σ is increasing, that Z ≥ 0 for all s P-a.s., and that gN (C) ≤ 0 (see

Section 5), then − gN (C)
σ(Y σ2 )

≤ − gN (C)
σ(Y σ1 )

. The other term is F ′(Y σi ); since F is concave, F ′ is

non-increasing, thus −F ′(Y σ1 ) ≤ −F ′(Y σ2 ). Hence, −f1(ω, s, C2, Z2) ≤ −f2(ω, s, C1, Z1),
as claimed. Now, the Comparison Theorem 2.2 in El Karoui et al. (1997) ensures that
C1(s) ≤ C2(s) for all s, P-a.s. Since the process Ci is deterministic at (t, x) and Ci(t) =

φσ
i
(t, x), we have that φσ1 (t, x) ≤ φσ2 (t, x) and the proof is finished. ut

A.6 Proof of Theorem 11

To show the result we will use a representation of the MPNE by means of an FBSDE,
alternative to the KR rule introduced in Section 5, more amenable for our purposes. Let the
process Y that satisfies

dY = (F (Y ) + (σσ′)(Y )) ds+ σ(Y ) dω, Y (t) = x,

where we have omitted the argument s to shorten notation. Then, for C(s) = φ(s, Y (s))
and the square–integrable adapted process Z (=σ(Y (s))φx(s, Y (s))), where φ is a solution
of the EL equation (10)) we have, as in Section 6.4

dC(s) =

(
R(C(s))(F ′(Y (s))− r)−

1

2
P (C(s))Z2(s) +

gN (C(s))

σ(Y (s))
Z(s)

)
ds+ Z(s)dw(s),

and C(T ) = ϕ(Y (T )). Note that the process Z does not depend on the number of players,
N . Let

fN (ω, s, C, Z) = R(C)(F ′(Y (s))− r)−
1

2
P (C)Z2 +

gN (C)

σ(Y (s))
Z

be the drift term of the SDE of C when the number of players is N and let (CN , ZN ) be the
corresponding solution. We have included ω ∈ Ω into the notation to stress the dependence
with respect to the process Y . We know that gN is negative thanks to Assumption (A3) (a)
(see also (12)). On the other hand, it is easy to see that gN , as a function of N , is monotonous
increasing if ρ(c) > 1 and decreasing if ρ(c) < 1. Let us suppose first that ρ(c) > 1.

Given that Z ≥ 0 a.s. by Theorem 5, then
gN1

(C)

σ
Z ≤ gN2

(C)

σ
Z a.s. if N1 ≤ N2. Hence

−fN1 (ω, s, CN2 , ZN2 ) ≤ −fN2 (ω, s, CN2 , ξN2 ), as well as CN1 (T ) = CN2 (T ). According to
the Comparison Theorem 2.2 of El Karoui et al. (1997), CN1 (s) ≤ CN2 (s) for all t ≤ s ≤ T ,
a.s. The case ρ(c) < 1 is analyzed analogously. Since φNi (t, x) = CNi (t) is deterministic,
the theorem is proved. ut
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A.7 Proof of Theorem 12

We follow the same steps as in the proof of Theorem 11, using the same FBSDE represen-
tation. The process Y is independent of the preference rate and the drift term of the SDE
of C in (A.6), fr, is decreasing in the preference rate. Hence r1 ≤ r2 implies −fr1 ≤ −fr2
and, by the Comparison Theorem 2.2 of El Karoui et al. (1997), we have the result. ut
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