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Abstract

We study the optimal management of an aggregated overfunded pension plan of defined

benefit type as a two-player noncooperative differential game. The model’s key fact is to

consider the fund surplus as a strategic variable that makes the pension plan more attractive

both for current and future participants. We let the worker participants to act collectively

as a single player that claims a share of the surplus, and let the sponsoring firm act as the

player that cares about the investment of the surplus fund assets. The union’s objective

is to maximize the expected discounted utility of the extra benefits claimed. We solve this

asymmetric game under two different assumptions on the preferences of the firm: in the first

scenario, the firm aims to maximize expected discounted utility derived from fund surplus;

while in the second scenario, the firm cares about minimizing the probability that the fund

surplus reaches very low values.
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1 Introduction

In defined benefit pension plans, a firm provides benefits to workers when they retire. Benefits

have been fixed in advance, and it is the sole responsibility of the firm to honor this liability. To
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this end, a pension plan is designed by using actuarial valuation, which calculates suitable con-

tributions to the fund to meet the promised benefit. Actuarial valuation takes into account such

variables as retirement age, employee’s life expectancy, mean salary increase, annual retirement

benefit amount, worker mobility, the possible evolution of interest rates and stock market perfor-

mance, among others. Besides contributions made by the employer and possible contributions

by the employee, the employer decides how to invest the pension fund’s assets.

Pension plans that have more (less) liabilities than assets are known as underfunded (over-

funded). That a pension plan becomes under- or overfunded is a dynamic process which depends

to a great extent on crashes and booms in the stock market. Whereas, in the underfunded case,

it is natural to think that the efforts of the employer should be aimed at minimizing the gap

between fund assets and liability, it is not clear what to recommend in the overfunded region.

Legislation forbids the distribution of any surplus of the pension plan to shareholders, being

devoted to current and future retirees. The firm may simply keep this excess amount in the

fund’s account, without any other motive than to accumulate assets, or the firm may act more

strategically, designing policies that provide, in addition of safety, additional incentives to fu-

ture participants to join the pension plan by providing extra rewards to both participants and

retirees. On the other hand, workers would surely like to play an active role in taking deci-

sions on how to use the fund surplus. It could be used to lessen the agreed contributions, or

to provide an extra benefit—it makes no sense to simply continue accumulating assets to the

pension plan if they are not going to be distributed to participants. Moreover, fund assets are

subject to taxation. The larger the fund size, the larger the tax payments. Instead of using the

fund surplus to pay taxes, agents may wonder why they should not allocate part of this surplus

among the participants. As said above, this would make it more attractive for future workers

to be hired by the firm and, consequently, enter into the pension plan, making it a stronger

financial instrument into the financial market.

The main question we address in this paper is how to manage the surplus when the pension

fund is overfunded. In more detail, the objective of the firm to minimize the (squared) difference

between fund assets and actuarial liability is fine when the fund is underfunded, but it is not

completely satisfactory in the overfunded case, as it refrains from using investment opportunities

that may provide high expected returns. To consider quadratic loss functions is common in the

literature on the optimal management of defined benefit pension plans; see e.g. Haberman

and Sung (1994), Chang (1999), Cairns (2000), Haberman, Butt and Megaloudi (2000), Josa-

Fombellida and Rincón-Zapatero (2001, 2004), Chang et al. (2002, 2003), Delong et al (2008),

Xu et al (2007) and Hainaut (2014), among others. Some extensions include stochastic interest
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rates, as in Huang and Cairns (2006), Josa-Fombellida and Rincón-Zapatero (2010) or Hainaut

and Deelstra (2011), or the consideration of jumps in the evolution of benefits and/or risky

assets, as in Josa-Fombellida and Rincón-Zapatero (2012) or Le Courtois and Menoncin (2015)

(the latter in defined contribution pension plans). When the fund is overfunded, the sponsor

could face slightly more risky investments to try to raise fund assets1. Now, if the firm takes

more risky investment decisions, then the participants should be compensated in some way for

the exposure of the pension plan to a higher risk of becoming underfunded. We suppose that

this compensation is negotiated dynamically between the firm and the representatives of the

workers. The compensation consists of a claim on the fund surplus, which can be seen as an

excess pension benefit that is added to the agreed benefits at the moment of retirement. No

claim of excess benefits is allowed when the pension plan is underfunded. We model this conflict

between the firm and the union as a non-zero sum dynamic game. The natural framework

is a noncooperative interaction, but we also allow for commitment between players and study

cooperative solutions. The main objective of the firms is to maintain fund assets at safe levels so

as to be able to pay benefits; however, as this is entirely the employer’s responsability, workers

may be interested in claiming a share of the excess fund assets in the form of a premium benefit.

Nevertheless, there is nothing to withdraw when there is no surplus, so workers have to be

careful with their demands in order not to drive the fund into the underfunded region.

To our knowledge, the models that have appeared in the literature of the dynamic manage-

ment of defined benefit pension plans consider only one decision agent, the sponsor of the plan.

The recent paper by Guan and Liang (2016), considers a game between the managers of two

defined contribution pension funds, under inflation risks. This game is quite different from the

game we propose here. First, our game is for defined benefit plans and second, the conflict arises

because the players have different views on how the surplus fund assets should be shared. In

the former defined contribution plan game, the conflict comes from two different managers look-

ing for investment opportunities, trying to maximize the expected utility on wealth, by acting

non cooperatively. Hence, both players have the same instrument at hand, that is investment.

However, in our game, whereas the firm chooses portfolios, the union decides, roughly speaking,

about benefits. It is as if in the classical Merton model the consumption/investment decisions

were decentralized, with one agent choosing investment and the other choosing consumption

1This is because, as the fund’s assets grow, it could be possible to diminish the planned contributions in the

actuarial computations. For instance, if the sponsor is using a spread method of funding, that is, the contribution

C equals NC + j(AL − F ), where NC is the normal cost, AL is the liability, F fund’s assets, and j > 0 is the

velocity of adjustment of the contribution to the normal cost, then contributions are below the normal cost in the

overfunded region.
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(benefits). Hence, the conflict is inside the pension plan itself, and it determines the investment

and benefits outcomes of the plan. In Guan and Liang (2016), as well as in the rest of references

below dealing with stochastic portfolio games, the interaction is between two different pension

plans (or investment managers, depending of the context). The structure of the game is also

different from other portfolio games that have appeared in the literature. It is worth mention-

ing Browne (2000), where a variety of games that model different preferences of the agents are

considered: utility maximization, ruin probability minimization and minimizing/maximizing-

expected-time to reach an objective.

The game that we propose in this paper has elements in common with Leong and Huang

(2010), which studies an stochastic version of the differential game of capitalism in Lancaster

(1973), where the players are the government, that maximizes a vote function, and a represen-

tative firm, that maximizes a flow of dividend payments for the shareholders, or with Cabo and

Garćıa-González (2014), where the authors consider, in a deterministic setting, a dynamic game

of public pension provision between the government and a representative employee, in order to

determine the optimal retirement age. The players have quadratic preferences.

We find that players with CRRA utilities use, in equilibrium, linear strategies, proportional

to the fund surplus, in such a way that the fund surplus never becomes null with positive

probability in finite time. Moreover, when the players have the same relative risk aversion

coefficient, the Nash equilibrium is Pareto optimal. Also, we show that if the aim of the firm

is to minimize the probability that the fund surplus reaches a very low value, this objective is

attained for a firm that wishes to maximize the utility obtained from the fund’s assets surplus for

a specific relative risk aversion coefficient. Overall, what we do is to design a scheme of how the

fund could be split between the participants and the firm when the pension plan is overfunded.

This division is not based on commitment, and no player has an incentive to deviate from this

recommendation, even at any intermediate stage of the interaction.

The paper is organized as follows. In Section 2. we define the elements of the pension

plan and the financial market. We let the worker participants to act collectively as a single

player that claims a share of the surplus, and let the sponsoring firm act as the player that

cares about the investment of the surplus fund assets. The union’s objective is to maximize the

expected discounted utility of the extra benefits claimed. We solve the game under two different

assumptions on the preferences of the firm: while in the first scenario, the firm aims to maximize

expected discounted utility derived from fund surplus; in the second scenario, considered in

Section 3, the firm cares about minimizing the probability that the fund surplus should reach

very low values. In Section 4 we present an economic illustration under two different regimes in
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the economy: in the first one, the economy is booming, and in the second one, the economy is

in recession. Finally, Section 5 establishes some further research directions.

2 The pension game

In this section, we set the elements of the maiden game: the financial market, the fund surplus

evolution and the payoffs and strategies of the players. After solving for the Nash equilibrium,

we show that it is also a Pareto outcome when the players have the same discount factors and

the same risk aversion coefficients.

2.1 Financial market and fund surplus evolution

The financial market is that introduced by Merton (1971). Consider a probability space (Ω,F ,P),

where P is a probability measure on Ω and F = {Ft}t≥0 is a complete and right continuous

filtration generated by the n–dimensional standard Brownian motion w = (w1, . . . , wn)>, that

is, Ft = σ {w1(s), . . . , wn(s); 0 ≤ s ≤ t}.
As in Merton’s model, the investor may trade between a riskless bond S0 and n risky assets

S1, . . . , Sn, which are geometric Brownian motions.

dS0(t) = rS0(t)dt, S0(0) = 1, (1)

dSi(t) = Si(t)
(
bidt+

n∑
j=1

σijdwj(t)
)
, Si(0) = si, i = 1, . . . , n. (2)

The constant r > 0 denotes the short risk–free rate of interest, bi > 0 the mean rate of return

of the risky asset Si, and σij > 0 the volatility coefficients. It is assumed that bi > r, for

each i = 1, ..., n, so the investor has incentives to invest with risk. The matrix (σij) is denoted

by σ and the Sharpe ratio or market price of risk for this portfolio, σ−1(b − r1), by θ, where

b = (b1, . . . , bn)> and 1 is a (column) vector of ones. The market is complete, that is, the

symmetric matrix Σ = σσ> is positive definite.

In our framework, the investor is the firm sponsoring the pension plan, who at time t = 0

possesses an initial endowment of fund reserves above the liability. We assume that the number

of pensioners is stable over time. This implies that the model contains neither the mortality

nor the longevity risk. We denote by X(t) the surplus at time t. The union claims a share of

X(t) in the form of extra benefits2. At the initial time, this excess value is X(0) = x > 0. The

union claims a share of X in the form of extra benefits. The sponsoring firm forms portfolios

2Note that we allow the surplus to be distributed even for negative values of X(t). However, we will show that

the optimal wealth is always positive.
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dynamically with the bond and the risky assets, trading among them. Let πi be the chosen

amount of surplus to be invested in the asset i ∈ {1, . . . , n}, and let π0 be the amount invested

in the bond; clearly π0 = X−
∑n

i=1 πi. We denote by P the extra benefits claimed by the union.

Under the trading strategy π = (π1, . . . , πn)> and benefits P , X follows the dynamics

dX(t) =
n∑
i=1

πi(t)
dSi(t)

Si(t)
+
(
X(t)−

n∑
i=1

πi(t)
)dS0(t)

S0(t)
− P (t)dt, (3)

or, after substituting (1) and (2) in (3)

dX(t) =
(
rX(t) + π>(t)(b− r1)− P (t)

)
dt+ π>(t)σ dw(t), (4)

which, together with the initial condition X(0) = x, drives the asset’s surplus fund evolution.

Now we define the class of admissible strategies of the union, AU , and the firm, AF . The

union chooses benefits and the firm chooses the portfolio. Investment and benefit strategies

are both Markovian and stationary, that is, they depend only on the state variable x and are

independent of time, π ≡ π(x), P ≡ P (x). As said above, benefits cannot take on negative

values, but they are null if the pension plan gets underfunded, thus P (x) ≥ 0 for any x > 0

and P (x) = 0 if x ≤ 0. We also assume that both processes {π(X(t)) : t ≥ 0} and {P (X(t)) :

t ≥ 0} are adapted to the filtration {Ft}t≥0 and Ft–measurable. Moreover, (P, π) satisfies the

integrability condition

E
∫ T

0
P (t)dt+ E

∫ T

0
π>(t)π(t)dt <∞, ∀T > 0. (5)

Then, given X(0) = x, (4) admits a unique strong solution. Note that in (5) we are identifying

π(t) with π(X(t)), as well as P (t) with P (X(t)), to shorten notation.

2.2 Players’ Payoffs

Let the strategic profile (P, π) ∈ AU × AM . Given π, the union chooses P that maximizes the

payoff

JU (x;P, π) = Ex
∫ ∞

0
e−αtu(P (t))dt, (6)

where u is a utility function of benefits and α > 0 is the time preference of the union.

In the same way, given P , the firm seeks π to maximize the payoff

JF (x;P, π) = Ex
∫ ∞

0
e−βtv(X(t))dt, (7)

where v is a utility function of the fund surplus and β > 0 is the time preference of the firm.
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To obtain explicit solutions, we focus on CRRA utility functions3:

u(P ) =
P 1−γ − 1

1− γ
, γ > 0,

v(X) =
X1−δ − 1

1− δ
, δ > 0.

The utility functions are both strictly concave.

2.3 Nash equilibrium strategies

In a dynamic noncooperative setting, the relevant solution concept is the Markov perfect Nash

equilibrium. An MPNE of the pension game is a pair of admissible strategies (P ∗, π∗) ∈ AU×AF

such that, for any (P, π) ∈ AU ×AF , for any x > 0

JU (x;P ∗, π∗) ≥ JU (x;P, π∗),

JF (x;P ∗, π∗) ≥ JF (x;P ∗, π).

Let VU and VF be the value function of the union and the firm respectively, that is

VU (x) = JU (x;P ∗, π∗),

VF (x) = JF (x;P ∗, π∗).

In the next proposition, we state the form of the MPNE of the pension game.

Proposition 2.1 Assume that the parameters of the game are such that the constants A,B

given in (8) and (9) below are both positive and finite. Then the value function of the union and

the firm in the Nash pension game (4), (6), (7) are

VU (x) = A
x1−γ

1− γ
− 1

α(1− γ)
,

VF (x) = B
x1−δ

1− δ
− 1

β(1− δ)
,

respectively, where

A =

(
α

γ
− 1− γ

γ

(
r +

(
1

δ
− γ

2δ2

)
θ>θ

))−γ
, (8)

B =
1

1− δ

(
β

1− δ
+
α− r
γ

+

(
1− γ
2δ2

− 1− γ
γδ

− 1

2δ

)
θ>θ

)−1

. (9)

3When γ = 1 or δ = 1, the utility functions are logarithmic: u(P ) = lnP, v(X) = lnX.
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The MPNE (P ∗, π∗) is given by

P ∗(x) = A−1/γx, (10)

π∗(x) =
1

δ
Σ−1(b− r1)x (11)

and the equilibrium fund surplus is a geometric Brownian motion process,

dX∗(t) = X∗(t)

(
r +

1

δ
θ>θ −A−1/γ

)
dt+X∗(t)

1

δ
θ> dw(t), (12)

thus X∗ > 0.

Proof. The Hamilton-Jacobi-Bellman system of PDEs of the Nash pension game is

αVU (x) = max
P

{
P 1−γ − 1

1− γ
+
(
rx+ π>(b− r1)− P

)
V ′U (x)

}
+

1

2
π>ΣπV ′′U (x),

βVF (x) = max
π

{
x1−δ − 1

1− δ
+
(
rx+ π>(b− r1)− P

)
V ′F (x) +

1

2
π>ΣπV ′′F (x)

}
.

From the optimality conditions we have

P−γ − V ′U (x) = 0⇒ P = (V ′U (x))−1/γ , (13)

(b− r1)V ′F (x) + σσ>πV ′′F (x) = 0⇒ π = −Σ−1(b− r1)
V ′F (x)

V ′′F (x)
. (14)

Plugging these expressions into the HJB system, and after some simplifications, we have
αVU (x) =

γ

1− γ
(V ′U (x))1−1/γ − 1

1− γ
+ rxV ′U (x)− θ>θ

V ′F (x)

V ′′F (x)
V ′U (x) +

1

2
θ>θ

(
V ′F (x)

V ′′F (x)

)2

V ′′U (x),

βVF (x) =
x1−δ

1− δ
− 1

1− δ
+ rxV ′F (x)− 1

2
θ>θ

(V ′F (x))2

V ′′F (x)
− (V ′U (x))−1/γV ′F (x).

(15)

Let us try solutions VU (x) = Ax1−γ

1−γ −
M

1−γ , VF (x) = B x1−δ

1−δ −
N

1−δ , where A,B > 0 are suitable

constants that are determined with the help of the equations (15). After substituting the guessed

value functions, we obtain M = 1
α and N = 1

β , and homogeneous expressions in the powers x1−γ

and x1−δ, respectively. Thus, the following two algebraic equations for A, B have to be fulfilled

α

1− γ
A =

γ

1− γ
A1−1/γ + rA+

1

δ
θ>θA− γ

2δ2
θ>θA,

β

1− δ
B =

1

1− δ
+ rB +

1

2δ
θ>θB −A−1/γB.

Solving for A and B to get (8) and (9) is straightforward.

Now, the equilibrium candidate (10) and (11) is obtained from the optimality conditions

(13) and (14), once VU and VF have been substituted. To see that the pair (P ∗, π∗) is indeed
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an MPNE, note that V ′′F < 0, because B > 0, thus π∗ is a true maximizer of the HJB equation

for the firm—it was already clear that P ∗ was a maximizer of the HJB equation of the union—.

Upon substitution of (P ∗, π∗) into the SDE (4), we get (12), thus (P ∗, π∗) is clearly an admissible

pair of strategies. In fact, the solution of (12) is

X∗(t) = x exp

((
r +

1

δ
θ>θ −A−1/γ − 1

2δ2
θ>θ

)
t+

1

δ
θ>
∫ t

0
w(s)ds

)
,

hence X∗(t) > 0. Finally, we prove that the transversality condition holds, that is

lim
t→∞

e−αtExVU (X∗(t)) = lim
t→∞

e−βtExVF (X∗(t)) = 0. (16)

See, for instance, Hernández-Lerma (1994), Section 7, or Theorem 8.5 of Dockner et al (2000).

By Arnold (1974), p. 139, for any real number a,

Ex(X∗(t))a = xa exp

{
a

(
r +

1

δ
θ>θ −A−1/γ − 1

2δ2
θ>θ

)
t+

a2

2δ2
θ>θt

}
.

After replacing a by 1− γ and then for 1− δ, we see that (16) holds if and only if

(1− γ)

(
r +

1

δ
θ>θ −A−1/γ − 1

2

γ

δ2
θ>θ

)
< α,

(1− δ)
(
r −A−1/γ +

1

2δ
θ>θ

)
< β.

These two conditions are equivalent to the nonnegativity of the constants A > 0 and B > 0

respectively, which is assumed in the proposition. �

Remark 2.1 (Study of the signs of A and B) Positivity of the constants A and B are cru-

cial in the above result. Note that by no means do A and/or B negative imply that a Nash

equilibrium does not exist, only that it is not in linear strategies. To explore if the game admits

a Nash equilibrium out of the conditions imposed in the result above is beyond the scope of this

paper. The constant A defined in (8) is positive if and only if α > (1− γ)(r + f(δ)θ>θ), where

f(δ) = 1
δ −

γ
2δ2

. It is clear that the more risk averse the players are (i.e., when δ, γ > 1), the

easier it is for the inequality to be fulfilled. On the contrary, for players showing very small risk

aversion (i.e., δ, γ < 1), the inequality may require high discount factors of the union. Analyti-

cally, this is because f attains its maximum value at δ = γ, hence players having the same risk

aversion is the most unfavorable case, and in this case α should be greater than (1−γ)(r+ 1
2γ θ
>θ).

Obviously, small values of γ would need large values of the discount factor α. Analogously, the

constant B is positive if and only if β > 1−δ
γ (r−α+(1−γ)g(δ)), where g(δ) = 1

δ −
γ

2δ2
+ γ

2δ(1−γ) .

We have a completely similar situation. The inequality is more likely to be fulfilled as the risk

aversion is higher. Now, players close to being risk neutral would imply high discount factors β

of the firm.
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Remark 2.2 The previous proposition remains true for logarithmic utility functions u(P ) =

lnP and v(X) = lnX. The value functions of the union and the firm are

VU (x) =
1

α
lnx+

1

α2

(
r +

θ>θ

2

)
+

1

α
(lnα− 1),

VF (x) =
1

β
lnx+

1

β2

(
r +

θ>θ

2

)
− α

β2
,

respectively, the MPNE is given by P ∗(x) = αx, π∗(x) = Σ−1(b− r1)x, and the equilibrium fund

surplus is the geometric Brownian motion process,

dX∗(t) =
(
r + θ>θ − α

)
X∗(t)dt+ θ>X∗(t) dw(t).

Note that the transversality condition is easily fulfilled because Ex lnX∗(t) = lnx+
(
r + θ>θ − α

)
t.

2.3.1 Comparative statics of Nash equilibrium

Both equilibrium strategies found in Proposition 2.1 are linear in fund surplus. The firm invest-

ment strategy, π∗(x) = 1
δΣ−1(b − r1)x, is also the optimal investment strategy for the Merton

model of maximizing the utility from consumption with a CRRA utility function (of course, the

original Merton model is not a two-player game). Note that, in the pension game, maximization

is performed with respect to fund surplus (or wealth). The expression of π∗ depends on the

firm risk aversion coefficient, δ, the excess mean returns of the risky assets with respect to the

bond, (b−r1), and on the inverse of the matrix Σ, which collects the volatility coefficients of the

risky assets. For δ = 1, i.e., when the utility is logarithmic, (1990, Ch. 6) demonstrates that π∗

maximizes the discounted and expected rate at which the fund surplus (or wealth) compounds.

For this reason, it is called the optimal-growth portfolio strategy. For the very same reason,

π∗ minimizes the expected time to hit a higher fund (or wealth) prescribed level. Hence, in

equilibrium, the firm aims to maximize the fund growth rate, according to the attitude towards

risk shown in the firm’s preferences. This is, of course, an objective that is aligned with the

union’s preferences, as it is obvious that the greater the growth of the fund, the greater the

benefits that the workers will claim. In fact, we will prove in Section 2.4 that, when both play-

ers have the same risk aversion coefficient, the MPNE is Pareto efficient. Finally, note that the

investment strategy, π∗, decreases with the risk aversion coefficient of the firm, δ. On the other

hand, the union’s equilibrium strategy, P ∗(x) = A−1/γx, shows a more complicated dependence

on the parameters of the pension game. The constant A depends on the attitude towards risk of

both players, the subjective discount factor of the union of workers, and finally, elements of the

financial market that summarize the risk and return of the assets. Computing the derivatives
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of the constant of proportionality A−1/γ = 1−γ
γ

(
α

1−γ − r −
1
δ θ
>θ + γ

2δ2
θ>θ

)
is easy. We have

∂A−1/γ

∂α
=

1

γ
, (17)

∂A−1/γ

∂r
= −1− γ

γ
, (18)

∂A−1/γ

∂θ
=

(1− γ)(γ − 2δ)

δ2γ
θ>, (19)

∂A−1/γ

∂δ
=

(1− γ)(δ − γ)

δ3γ
θ>θ (δ 6= γ), (20)

∂A−1/γ

∂γ
= −γ − 2δ

2δ2γ
θ>θ − α− r

γ
(γ 6= δ). (21)

As expected, (17) shows that P ∗ increases with α, since the union cares more about the present

than about the future when the subjective discount factor increases. Expression (18) shows a

negative dependence of P ∗ with respect to the riskless rate of return, r, when 0 < γ < 1. This

is because the larger r is, the larger the return of the portfolio, all the other elements being

constant. Hence it pays to withdraw less surplus now in order to get a larger average return

in the future, so the total expected benefit collected will be greater. The opposite behavior is

observed for, γ > 1, when the player is more risk averse. The influence of the Sharpe ratio on

benefits appears in (19) and depends on the relative size of the relative risk aversion coefficient

of the players. The benefits are increasing (decreasing) if γ > 2δ (γ < 2δ), that is, if the risk

aversion of the union is more (less) than the double of the risk aversion of the manager. In the

particular case γ = 2δ, benefits are independent of the Sharpe ratio.

In (20), we have that benefits decrease when the risk aversion parameter of the manager

increases and the manager is more risk averse than the union, but P ∗ increases when the union

is more risk averse than the firm. The benefits P ∗ reaches its minimum value when both union

and firm have the same risk aversion index, δ = γ, and it is P ∗(x) = 1−γ
γ

(
α

1−γ − r −
θ>θ
2γ

)
x.

The dependence on its own risk aversion parameter is given in (21) and this shows many

possibilities. If the discount rate α is greater than r − 1
δ θ
>θ, then the benefits are decreasing

with γ. This is because uncertainty makes the union save more now to get greater surplus in

the future; this behavior is speeded up because the union cares more about the present than the

future. However, if α is not large enough, we can find regions for which benefits increase as γ

decreases. In particular, this happens for γ close to 0 (when the union is “almost” risk neutral).

11



2.3.2 Surplus and extra benefits equilibrium evolution

In order to study the expected surplus evolution, we take expectation in (12) to obtain

ExX(t) = x exp

{(
r +

1

δ
θ>θ −A−1/γ

)
t

}
,

that converges to ∞ if r + 1
δ θ
>θ > A−1/γ , that is to say, when r − α+ 1

δ θ
>θ > 1

2δ2
γ(1− γ)θ>θ,

and converges to 0, otherwise.

From (12), we also can obtain the benefits evolution, using P ∗ = A−1/γX:

dP (t) =

(
r +

1

δ
θ>θ −A−1/γ

)
P (t)dt+

1

δ
θ>P (t) dw(t),

P (0) = A−1/γx. The expected benefits can be obtained easily, given X(0) = x:

ExP ∗(t) = A−1/δExX(t) = A−1/δxe(r+ 1
δ
θ>θ−A−1/γ)t.

2.4 Pareto equilibrium strategies

Suppose now that the players coordinate efforts to attain an efficient solution. In a two-player

game, a Pareto equilibrium is a cooperative solution of the game in which there is no possibility

of improving the payoff of one of the players without diminishing the payoff of the other player.

Thus, (P c, πc) is a Pareto equilibrium if there is no admissible (P, π) such that

JU (x;P, π) ≥ JU (x;P c, πc),

JF (x;P, π) ≥ JF (x;P c, πc),

with at least one of the inequalities above being strict. It is well known that with suitable

convexity, as is the case in our framework, Pareto equilibrium can be obtained by solving a

control problem where the dynamics remains the same as in the Nash game, but the payoff is a

convex combination of the players’ payoffs. Let us denote the weight in the convex combination

by µ. As µ takes values in the interval [0, 1], different Pareto equilibria are obtained. Under the

assumption that both players have the same negotiation power, it is common to take µ = 1/2.

We will find, however, the Pareto equilibrium for any µ.

Hence the payoff to be maximized on the class of the admissible controls AU ×AF is:

Jµ(x;P, π) = Ex
∫ ∞

0

(
µe−αtu(P (t)) + (1− µ)e−βtv(X(t))

)
dt,

where u and v are utility functions of benefits and surplus, respectively, α > 0 and β > 0 are

the time preference of the union and the sponsor, and µ ∈ [0, 1] is a parameter. As well known,

12



α 6= β leads to a problem with temporal inconsistence. We want to avoid this complications

and focus on the time-consistent case to compare with the MPNE found in the previous section.

Moreover, an explicit solution is beyond our efforts in the asymmetric game γ 6= δ. Again, in

order to get a neat solutions easily comparable with the outcome of the noon-cooperative game,

we focus on the case where the CRRA utilities have the same relative risk aversion parameter.

Thus, we assume α = β = ρ and γ = δ 6= 1, with γ, δ > 0, so the payoff becomes

Jµ(x;P, π) = Ex
∫ ∞

0
e−ρt

(
µ
P (t)1−γ − 1

1− γ
+ (1− µ)

X(t)1−γ − 1

1− γ

)
dt. (22)

In order to solve the game with the dynamic programming approach (see for instance Dockner

et al (2000)), we obtain the HJB equations. Let W be the value function,

W (x) = max
(P,π)∈AU×AF

{
Jµ(x;P, π) : s.t. (4)

}
.

We use the following notation to simplify the exposition. Let

m =
ρ

1− γ
− r − 1

2γ
θ>θ,

n =
1− µ
1− γ

,

ñ =
γ

1− γ
µ1/γ .

Note that n, ñ > 0.

Proposition 2.2 Assume that m > 0. Then the value function of the control problem (4), (22),

is

W (x) = K
x1−γ

1− γ
− 1

ρ(1− γ)
,

where the constant K is the unique positive solution of(
ρ

1− γ
− r − 1

2γ
θ>θ

)
K1/γ − 1− µ

1− γ
K1/γ−1 − γ

1− γ
µ1/γ = 0, (23)

the Markov Pareto equilibrium is

P c(x) = µ1/γK−1/γx, (24)

πc(x) =
1

γ
Σ−1(b− r1)x, (25)

and the equilibrium fund surplus evolution is given by

dX∗(t) = X∗(t)

(
r +

1

γ
θ>θ −

(
K

µ

)−1/γ )
dt+X∗(t)

1

γ
θ> dw(t). (26)

13



Proof. The HJB equation is

ρW (x) = max
P,π

{
µ
P 1−γ − 1

1− γ
+ (1− µ)

x1−γ − 1

1− γ
+
(
rx+ π>(b− r1)− P

)
W ′(x) +

1

2
π>σσ>πW ′′(x)

}
.

From the optimality conditions one gets

µP−γ −W ′(x) = 0⇒ P =

(
W ′(x)

µ

)−1/γ

, (27)

(b− r1)W ′(x) + σσ>πW ′′(x)⇒ π = −Σ−1(b− r1)
W ′(x)

W ′′(x)
. (28)

After plugging these expression into the HJB equation above and collecting some terms we lead

to the PDE

ρW (x) =
γµ1/γ

1− γ
(W ′(x))1−1/γ − µ

1− γ
+

1− µ
1− γ

x1−γ − 1− µ
1− γ

+ rxW ′(x)− 1

2
θ>θ

(W ′(x))2

W ′′(x)
.

Let us try W (x) = K x1−γ

1−γ −
L

1−γ , with K > 0 a suitable constant. By substituting, the HJB

equation is satisfied if L = 1
ρ and K is a positive solution to the algebraic equation (23). Let us

show that this equation admits a unique positive solution K̃. Let f(K) = mK1/γ−nK1/γ−1− ñ
be the function defined by the left hand side of the equality. This function is continuous on

[0,∞) since γ 6= 1. Moreover, m,n, ñ > 0 by assumption, hence f(0) < 0. Computing the

derivative of f with respect to K we have that f is decreasing in [0, (1−γ)n
m ] and increasing

in [ (1−γ)n
m ,∞), with limK→∞ f(K) = ∞, thus f(K) = 0 admits a unique solution. Now, we

proceed to check that the coefficient or constant of proportionality defining pc(x), which can be

written γ
1−γ (m− nK−1), is positive. This is true if and only if the zero of f , K, is greater than

n
m . To see that this is indeed the case, note that f( nm) = m

(
n
m

)1/γ −n ( nm)1/γ−1− ñ = −ñ < 0,

thus n
m < K since f is negative to the left of K and positive to the right.

Finally, we complete the proof by showing that the transversality condition holds. By sub-

stituting the expression for W into the optimality conditions, (27) and (28), we obtain (24) and

also (25). Again, by Hernández-Lerma (1994) Section 7, or Theorem 8.5 of Dockner et al (2000),

the proof concludes when the transversality condition is checked:

lim
t→∞

e−ρtExW (X∗(t)) = 0. (29)

As the surplus evolution with the optimal strategies is given by (26), thus, by Arnold (1974), p.

139, for a real number a,

Ex(X∗(t))a = xa exp

{
a

(
r +

1

γ
θ>θ −

(
K

µ

)−1/γ

− 1

2

θ>θ

γ2

)
t+

a2

2

θ>θ

γ2
t

}
.
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As in the proof of Proposition 2.1, after replacing a by 1− γ, we see that (29) holds if and only

if

(1− γ)

(
r +

1

γ
θ>θ − µ1/γK−1/γ − 1

2γ
θ>θ

)
< ρ.

By (23), this condition is equivalent to

1− γ
γ

(
r − ρ

1− γ
+

1

2γ
θ>θ + (1− µ)K−1

)
< 0.

This is true because K > (1− γ)n/m = (1− µ)/m, from previous comments. �

The Pareto strategy of the firm is the same as in the noncooperative game, π∗ = πc. In fact,

it is the well known maximum portfolio growth rule. Benefits are also proportional to wealth

surplus, with a constant of proportionality that now depends on the weight µ. It is worth noting

that, for µ = 1 (i.e., when the common objective is to maximize the union’s payoff) we recover

the MPNE. Hence, we have proved that the MPNE, when α = β and γ = δ, is Pareto efficient.

This is a remarkable result that is really rare to find. The reason for having this property in the

pension game is that the aim of maximizing an increasing and concave utility function of fund

surplus is aligned with maximizing a utility from benefits collected from the fund surplus. The

larger the fund surplus, more ample possibilities exist to collect more benefits. We establish this

discussion in the following proposition.

Proposition 2.3 The MPNE of the pension game (4), (6), (7), with α = β and γ = δ is Pareto

efficient.

Compared with the Pareto solutions for µ < 1, the MPNE over collect benefits. This is a

typical situation known as “the tragedy of the commons”: in general, cooperation leads to less

aggressive policies of the players that, in this concrete model, allows a higher expected rate of

growth of the fund surplus, thereby allowing higher benefit levels to be collected. Note that for

α = β, γ = δ, µ < 1 and x > 0

P ∗(x) =
1− γ
γ

(
ρ

1− γ
− r − 1

2γ
θ>θ

)
x

>
1− γ
γ

(
ρ

1− γ
− r − 1

2γ
θ>θ − 1− µ

1− γ
K−1

)
x = P c(x).

As a consequence, both players are better in the cooperative solution, as we will prove below. The

payoff of the union with Pareto strategies is JU (x;P c, πc) = Jµ=1(x;P c, πc), which coincides with

W (x) when µ = 1. From (8) and (23), constant K for µ = 1 is K =
(

1−γ
γ

(
ρ

1−γ − r −
θ>θ
2γ

))−γ
=

A. Note that we are assuming α = β and γ = δ. Analogously, the payoff of the firm with

Pareto strategies is JF (x;P c, πc) = Jµ=0(x;P c, πc), which coincides with W (x) when µ = 0.
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From (9) and (23), the inverse of constant K for µ = 0 is K−1 = (1 − γ)
(

ρ
1−γ − r −

θ>θ
2γ

)
<

ρ+ ρ
γ −

1−γ
γ

(
r + θ>θ

2γ

)
= B−1, because 0 < γ < 1 and ρ > 0. Then we have proved:

JU (x;P c, πc) = JU (x;P ∗, π∗) = VU (x),

JF (x;P c, πc) > JF (x;P ∗, π∗) = VF (x).

Although superior in terms of outcome, Pareto strategies suffer from the drawback of not being

stable, since the union has incentives to deviate from the Pareto solution—except when µ = 1

as said above—.

3 A pension game of minimizing the probability of reaching

a low surplus level

Undoubtedly, the firm’s objective of maximizing an increasing utility of the fund surplus also

cares about the health of the pension plan, but it is not the only sensible way to model the

aim of the firm of honoring the comprised liabilities. Hence, let us study here a variant of the

previous game. The objective of the union continues to be the same, as well as the dynamics.

Only the objective of the firm changes. We suppose that, instead of maximizing the discounted

expected utility of the fund surplus, the firm fixes two fund surplus levels, ` > 0 (for the lower

level) and ν > ` (for the upper level), and starting the funding process with X(0) = x ∈ (`, ν),

wishes to maximize the probability of reaching ν before `. Thus, the objective is different from

the one given in the pension game in Section 2. There, the firm’s aim was to maximize the

expected growth rate of the pension fund, weighted by the risk aversion index of the firm. Here,

the firm is not only concerned with growth, but also with preventing that the fund assets hit

the the low level ` before hitting the upper level ν.

3.1 Players’ Payoffs

We first deal with the payoffs of the firm. Given P ∈ AU fixed, the firm chooses π ∈ AF to

maximize the probability that the fund surplus reaches ν before `, hence the payoff is

JF (x;P, π) = P (Tν < T`|X(0) = x) , ` < x < ν. (30)

Here Tz denotes the first time that X hits the value z ≥ 0. If X(P,π) is the fund surplus under

profile (P, π) satisfying (4), then Tz = inf{t > 0 : X(P,π)(t) = z}. We can rewrite the payoff as

JF (x;P, π) = Exh(X(P,π)(T ))
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with T = min{T`, Tν)and h(`) = 0, h(ν) = 1.

The union’s payoff should be

JU (x;P, π) = Ex
(∫ T

0
e−αtu(P (t))dt+ e−αT g(X(P,π)(T ))

)
,

where g is a bequest function. These two functionals, together with the evolution of X given in

(4), specify the game. The game terminates at the random time T . Stochastic optimal control

problems of this type are usually difficult to solve, explicitly or even numerically. Here, the

problem seems even harder since we are dealing with a game. The problem arises because the

value functions of the players satisfy a two-point boundary value system of differential equations.

The boundary conditions are

VU (`) = g(`), VU (ν) = g(ν),

VF (`) = 0, VF (ν) = 1.

The HJB system is4

αVU (x) = max
P

{
P 1−γ − 1

1− γ
+
(
rx+ π>(b− r1)− P

)
V ′U (x)

}
+

1

2
π>ΣπV ′′U (x),

0 = max
π

{(
rx+ π>(b− r1)− P

)
V ′F (x) +

1

2
π>ΣπV ′′F (x)

}
.

Note that the maximizers obey the same rule as in the previous game of Section 2

P = (V ′U (x))−1/γ , (31)

π = −Σ−1(b− r1)
V ′F (x)

V ′′F (x)
. (32)

and substituting them into the system above, we get
αVU (x) =

γ

1− γ
(V ′U (x))1−1/γ − 1

1− γ
+ rxV ′U (x)− θ>θ

V ′F (x)

V ′′F (x)
V ′U (x) +

1

2
θ>θ

(
V ′F (x)

V ′′F (x)

)2

V ′′U (x),

0 = rxV ′F (x)− 1

2
θ>θ

(V ′F (x))2

V ′′F (x)
− (V ′U (x))−1/γV ′F (x).

(33)

The boundary conditions are, as we said above,

VU (`) = g(`), VU (ν) = g(ν),

VF (`) = 0, VF (ν) = 1.

4The stochastic control problems of Dirichlet type, as in the problem considered here, have been analyzed

with the dynamic programming approach in Krylov (1980). General results in the portfolio selection have been

obtained in Browne (1997, 1999). Josa-Fombellida and Rincón-Zapatero (2006) introduced and studied these

types of problems in pension funding.
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We have not been able to find an explicit solution to this problem, even for simple selections

of the bequest function g. Thus, we proceed to simplify the game. We will solve instead a

modified game, where the union acts rather myopically, as if the planning horizon were not

random, but fixed and of infinite horizon. If the upper value ν is large, then the probability

that the process X will leave the interval (`, ν) by the upper boundary may be made small.

Moreover, as we will prove below, at the Nash equilibrium with suitable assumptions concerning

the game’s parameters, the lower boundary ` is never reached with positive probability. Thus,

for large values of ν, to approximate the union’s payoff with the expected utility on the interval

[0,∞) could be justified. Based on these considerations, we assume that the union wishes to

maximize

JU (x;P, π) = Ex
∫ ∞

0
e−αtu(P (t))dt, (34)

as in the previous sections, and analyze the game as an approximation to the true game, for

which we do not know the solution. Now, the boundary conditions for the value function VU

does not apply and we can solve the game explicitly. Then the boundary conditions that we

impose are

lim
t→∞

e−αtEx(VU (XP,π(t))) = 0,

VF (`) = 0, VF (ν) = 1.
(35)

The first equality is the familiar transversality condition. The second set of conditions establishes

that the probability of reaching ν before reaching ` is 0 at x = ` and 1 at x = ν.

In the next proposition, we state the form of the MPNE of the pension game given by (30),

(34) and (35), join with the dynamics (4). In what follows, we will often refer to this game

as the second scenario game. When the union is characterized by a low risk averse parameter

(0 < γ < 1), two MPNE in linear strategies emerge, but for a moderate (γ = 1) or high risk

averse union (γ > 1), the linear MPNE is unique.

Proposition 3.1

Assume that α > r and

∆ :=
(

(1− γ

2
)θ>θ

)2
− 2(α− r)γ(1− γ)θ>θ > 0. (36)

Let x ∈ (`, ν).

1. Suppose 0 < γ < 1. Then there are two linear MPNE (P r+, π
r
+) and (P r−, π

r
−) of the game,

which are given by

P r±(x) = D
−1/γ
± x, (37)

πr±(x) =
1

η±
Σ−1(b− r1)x, (38)
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where

D± =

(
r +

1

2η±
θ>θ

)−γ
, (39)

and

η± =
(1− γ

2 )θ>θ ±
√

∆

2(α− r)
. (40)

The value functions of the union and the firm in the pension game (4), (30), (34) corre-

sponding to each MPNE are

VU (x) = D±
x1−γ

1− γ
− 1

α(1− γ)
, (41)

VF (x) =
x1−η± − `1−η±

ν1−η± − `1−η±
(42)

and the equilibrium fund surplus in both MPNE is the geometric Brownian motion process

dX∗(t) =
θ>θ

2η±
X∗(t)dt+

1

η±
θ>X∗(t) dw(t), (43)

respectively.

2. Suppose γ ≥ 1. Then there is only one linear MPNE (P r+, π
r
+) of the game, which expres-

sion is given in (37), (38), (39), (40) and the value functions are given in (41) and (42)

above, with η+. The equilibrium fund surplus in the MPNE is the geometric Brownian

motion process given in (43) above with η+.

Proof. We will show (1) and (2) of the proposition at once. To solve the HJB system (33)

and initial data (35) we try solutions of the form VU (x) = D x1−γ

1−γ −
E

1−γ and VF (x) = x1−η−`1−η
ν1−η−`1−η ,

where the constants D and η have to be determined (VU (x) = D lnx when γ = 1). After plugging

the guessed expressions for the value functions into the HJB system (33), we get E = 1
α and

that D and η have to satisfy

α

1− γ
=

γ

1− γ
D−1/γ + r +

1

η
θ>θ − γ

2η2
θ>θ,

0 = r +
1

2η
θ>θ −D−1/γ .

The case γ = 1 can be recovered from these equations by multiplying the first equation by 1− γ
and the substituting γ = 1. In this case we have D = α−1 and η = η+ = θ>θ

2(α−r) . Now consider

the case γ 6= 1. Substituting D−1/γ from the second identity into the first equation we get the

quadratic equation in η

(α− r)η2 − (1− γ

2
)θ>θη +

1

2
γ(1− γ)θ>θ = 0, (44)
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which admits the solutions η± =
(1− γ

2
)θ>θ±

√
∆

2(α−r) . Both are real, since the discriminant ∆ of the

equation (44) is positive by assumption. Let us introduce the notation η±(γ) to indicate the

dependence of the solutions on γ. Note that η−(γ) > 0 for all 0 < γ < 1 but η−(1) = 0 and

η−(γ) < 0 for γ > 1. Hence, an equilibrium in linear strategies cannot be constructed from

the solution η−(γ) for values γ ≥ 1, since in this case the proposed value function (42) is not

concave, hence the strategy does not maximize the HJB equation of the firm. However, the

other solution satisfies η+(γ) > 0 for all γ > 0. This is the reason for which two MPNE exist in

the case 0 < γ < 1 but only one exists in the case γ ≥ 1. Note that the coefficient D± is well

defined and positive in both cases. Moreover, VU defined in (41), as well as VF defined in (42)

are strictly monotone and concave, with VF non negative. Now, the equilibrium candidates (37)

and (38) are obtained from the optimality conditions (31) and (32), once VU , VF are substituted.

They are true maximizers of the HJB equation for the firm—it was already clear that P r± was a

maximizer of the HJB equation of the union—. Upon substitution of (P r±, π
r
±) into the SDE (4),

we get (43), thus (P r±, π
r
±) are clearly admissible pairs of strategies. Finally, we prove that the

transversality condition (35) holds. See, as in the proofs of previous propositions, Hernández-

Lerma (2004) Section 7, or Theorem 8.5 of Dockner et al (2000). By Arnold (1974), p. 139, for

any real number a, and for η = η+ or η = η−

Ex(X∗(t))a = xa exp

{
a

(
1

2η
θ>θ − 1

2η2
θ>θ

)
t+

a2

2

θ>θ

η2
t

}
.

After replacing a by 1− γ, we see that (35) holds if and only if

(1− γ)

2η2
θ>θ(η − γ) < α.

By (44), this condition is equivalent to 1
2θ
>θη+ rη2 > 0. The left side, coincides with η2D−1/γ ,

which is positive. �

As in Section 2, the equilibrium strategies P r± and πr± are proportional to the surplus X.

It is interesting to note that they do not depend on ` or ν. We have carried out a sensitivity

analysis, as in Section 2.3.1, obtaining a similar response of the coefficient strategies to changes

in the parameters, so we do not report our findings here.

Remark 3.1 When α = r+(γ
2

2 −γ+1)θ>θ, then the previous proposition is true letting η± = 1

and VF (x) = lnx−ln `
ln ν−ln ` .

Remark 3.2 It is not difficult to prove that if r < α < r+(γ
2

2 −γ+1)θ>θ, then 0 < η− < 1 for

all 0 < γ < 1 and η+ > 1 for all γ > 0. In consequence for 0 < γ < 1, both P r−(x) > P r+(x) and

πr−(x) > πr+(x), thus the equilibrium (P r−, π
r
−) is more aggressive than (P r+, π

r
+). That is, given
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the same surplus level x, the union claims a higher amount of benefits in the former equilibrium

than in the latter one, and this claim forces the firm to make riskier investments. In fact, from

limγ→1− η
− = 0, it follows limγ→1− P

r
−(x) = limγ→1− π

r
−(x) =∞. This lack of continuity of the

equilibrium (P r−, π
r
−), together with its limited existence interval with respect to the risk aversion

parameter of the union, makes this equilibrium unattractive to consider as a solution of the

game in real applications. In fact, empirical studies suggest that the range of the risk aversion

parameter of economic agents is never below 1. However, the equilibrium when γ = 1 is well

defined and is obtained by plugging η+(1) = θ>θ
2(α−r) into the expression of the coefficient D in

(39). In the economic illustration of the results carried out in the next section, we will consider

only the case with γ ≥ 1 and thus we have to consider only the equilibrium (P r+, π
r
+), eliminating

the ambiguities that arise in the case 0 < γ < 1.

4 Economic Analysis

In this section we study the impact of the player’s risk attitude on the optimal benefit rate

claimed by the union and the optimal portfolio constructed by the firm. We consider the two

scenario games studied above in sections 2 and 3, respectively. For the reasons given in Remark

3.2, in the game of minimizing the probability of reaching a low surplus we focus only on the

equilibrium (P r+, π
r
+). The table below recall the equilibrium previously found in each game. To

Table 1: Equilibrium strategies, γ ≥ 1

Game Investment Benefit

Maximizing utility π∗(x) = 1
δΣ−1(b− r1)x P ∗(x) = A−1/γx

Minimizing probability of reaching a low surplus πr+(x) = 1
η+ Σ−1(b− r1)x P r+(x) = D

−1/γ
+ x

simplify the exposition, we suppose that the financial market consists of only one risky asset

and of the riskless bond. For the the risky asset we take the S&P 500 index. We denote its

return and volatility by b and σ, respectively.

For the illustration we will consider two different regimes in the financial market. Regime 1

considers a bull market, in which the economy is booming. Regime 2 represents a bear market,

in which the economy is in recession. A clear bull framework is found during the accumulation

period of the sub-prime bubble, which we take from July 2006 to August 2007, while a clear

bull framework is found after the collapse of that bubble. Though it is true that the crisis was

considered over by 2010, for practical purposes we consider a bear framework that goes from July
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2007 to July 2012. The reason is that our results work only for strictly positive risk premium,

but the estimated value we find for the S&P 500 index during the period July 2006 to August

2007 is negative, hence we extend the duration until July 2012. In fact, in this latter period, the

S&P 500 index retains the main characteristics of a bear market: a rather low expected annual

rate of return b and a relatively high volatility σ, meaning that the index values vary within a

large interval. See the figures below that give a picture of daily variation of the S&P 500 index

in the periods alluded above.

[INSERT Fig. 1 and Fig. 2 HERE]

In what follows, we denote ui and si the unbiased estimator of the mean log returns and

of the sample standard deviation in Regime i, respectively, where i = 1, 2. To construct these

estimators we have used financial data reflecting daily variations of the S&P 500 index collected

from Yahoo! finance website. Since there are approximately τ = 252 trading days in a year,

σi is estimated as si√
τ

and bi is estimated as ui√
τ

+ 1
2σ

2
i , for i = 1, 2. In our calibration, we take

the riskless interest rate as ri = 0.01, i = 1, 2. Table 2 shows the parameters above. We will

compare the equilibrium outcomes of the games analyzed in the previous sections under both

regimes.

Table 2: Estimated Values of the Parameters

Regime ui si σi bi

1 (bull market) 0.000551 0.006771 0.107480 0.144604

2 (bear market) −0.000087 0.016870 0.26780 0.01400

We have taken the same discount factor for both players, and equal to 0.98, implying a value

of α = β = 0.02. The parameters δ and γ control the risk aversion of the players. Values δ, γ < 1

indicate that the players are low risk-averse, moderate risk-averse when δ = γ = 1 (logarithmic

case) and they are high risk-averse when δ, γ > 1. Mehra and Prescott (1985) discusses several

studies on the possible realistic values of γ and δ. The current literature indicates that an

admissible range of values is between 1 and 10. Consequently, we take γ, δ ∈ [1, 10], and allow

for different attitudes through risk of the players.

We first focus on the maximizing utility game of Section 2. Whereas both proportional

factors A and B in Proposition 2.1 are positive and finite for the parameters chosen in Regime

1 for an ample range of values of γ, δ ∈ [1, 10], it happens that this region is quite narrow under

Regime 2. However, the region of positivity (and finiteness) of both A and B is always non
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empty, as it always contains the diagonal γ = δ, for values γ = δ ≥ 1. This is easily seen by

substituting γ = δ into the expressions for A and B in Proposition 2.1, to get

A
− 1
γ =

α

γ
− 1− γ

γ

(
r +

θ>θ

2γ

)
,

which is obviously positive, and

B =

(
β +

1− γ
γ

(
α− r − θ>θ

2γ

))−1

.

The function γ 7→ g(γ) := 1−γ
γ

(
α− r − θ>θ

2γ

)
presents a unique maximum at γ̂ = θ>θ

α−r+ θ>θ
2

> 0,

if α > r, as it is case in the calibration we are using. Since g(1) = 0 and limγ→∞ g(γ) = 0,

it turns out that g(γ) > 0, and thus 0 < B < ∞. Thus, the equilibrium is well defined when

δ = γ, which will be assumed below in the rest of this section.

[INSERT Fig. 3 and Fig. 4 HERE]

Figure 3 represents the percentage of benefits claimed by the union in function of the risk

aversion parameter γ, when it varies in [0, 10], both in the bull and the bear market. Note that

benefits claimed are much higher in the bull market than in the bear market, where it takes

a modest value. Hence, the equilibrium prescribe a cautious behavior of the union when the

economy is in recession. The curve does not show a decreasing shape in the bull framework. For

low values of the risk aversion parameter it is increasing, and it only starts to decrease beyond

some critical value of γ. Figure 4 draws the coefficient B of the value function of the firm given

in Proposition 2.1, against γ. We use two different vertical scales, since it is much higher in the

bear market than in the bull market. This behavior could be explained because in a booming

economy, the union is going to asks for larger benefits than in the bear case. Since the firm

derives increasing utility from the total wealth in the surplus fund, this could be the reason of

why B is higher in one case than in the other.

Now we compare both games. As stated above, we take δ = γ. Figure 5 plots the solutions

of the quadratic, η−, η+ against γ, as well as the 45 degree line whe the economy is booming.

Note that, as proved in the section above, η− < 0 and η+ > 1 for values γ > 1. In consequence,

the game admits only the equilibrium (P r+, π
r
+). The risk aversion parameter of the firm (that

in the second scenario game is endogenous to the solution) is always above the risk aversion

parameter of the union, γ. The difference η+(γ)−γ is positive but it declines with γ and vanishes

asymptotically as γ →∞. We can interpret this result as follows: in the second scenario game

and in a booming period, the firm behaves, roughly speaking, as an agent whose preferences

are more conservative than the preferences of the union, although this effect is mitigated as
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the risk aversion parameter γ increases. Hence, risky investment in the second scenario game is

smaller than in the utility maximizing game, where, due to the expansion period in the economy,

the prospects of the fund manager are more optimistic. For instance, a firm with logarithmic

utilities, γ = 1, in a bull market environment, invests in the risky asset around 1172% of the

funds (recall that to borrow money at rate r% is allowed to the firm) but the firm invests only

15% of the fund in the risky asset if the objective is to minimize the probability that the fund

surplus gets the level ` < ν. But not only the firm becomes more cautious: the union also uses a

more moderate strategy (with the only exception of the logarithmic utility case, where it is the

same amount). Figure 6 show the investment strategy of the firm in the two scenario games.

Figure 7 draws the benefits claimed by the union. Benefits are higher in the first scenario game

than in the second one.

[INSERT Fig. 5, Fig. 6 and Fig. 7 HERE]

Figures 8, 9 and 10 are the counterpart of Figures 5, 6 and 7, when the economy is in

recession. As it can be observed, the firm is more conservative than the union in second scenario

game, as now η+(γ) < γ. The fact that the economy is in recession makes the firm to adopt a

precautionary behavior, so now the investment in the risk asset is always below the corresponding

level in the second scenario game. Regarding benefits claimed by the union, they continue to

be higher in the first scenario game than in the the second one; it seems that the mode of the

economy does not affect this behavior (at least for the different experiments we have carried

out, and that are not reported here). In recession, benefits are quite similar in both games,

independently of risk aversion parameter of the player. However, in a booming economy, benefits

are appreciably different in both games for low values of the risk aversion parameter. Figures 9

and 10 give a comparison of the players’ strategies in both scenario games within an economy

in recession.

[INSERT Fig. 8, Fig. 9 and Fig. 10 HERE]

5 Conclusions

In the large body of literature about defined benefit pension plans, the interaction between

sponsor and participants has been considered as one of a sole decision agent. The participants

took a passive role. Our starting point in this paper has been that, at least when the fund

is overfunded, the fund surplus could be given a strategic role by incrementing the benefits of

the participants at the time of retirement. We have proposed an asymmetric noncooperative
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game in two different scenarios that allows for analytical solutions and that could be easily

implemented in real pension plans of defined benefits type, since the Nash equilibrium is linear.

We have shown that players with the same relative risk aversion index will seek noncooperatively

a cooperative outcome, or in other words, the decentralized interaction gives rise to an efficient

split of the fund surplus. Moreover, if the sponsoring firm is worried about the safety of the

pension plan, this behavior corresponds in equilibrium with a firm that wants to maximize its

own discounted expected utility in the first scenario game. Further research will be directed at

analyzing hierarchical interaction between firm and participants, which is an interesting situation

if the two players have different negotiating power. Here, the relevant solution concept is the

Stackelberg equilibrium. It would be worth comparing the Nash equilibrium with the Stackelberg

equilibrium to see to what extent the advantage of being the leader, which is a usual property,

is maintained in this case.
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Matemática Mexicana. México D.F.
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Figure 3: Percentage of benefits A−1/γ = P ∗

x claimed by the union in the first scenario game,

represented as a function of the risk aversion parameter γ = δ
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Figure 5: Solutions η± of the quadratic equation (44). Regime 1
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Figure 6: Percentage of fund surplus invested in the the risky asset by the firm in the first and

in the second scenario game, π∗

x and
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x , respectively. In both cases they are drawn against γ.
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Figure 7: Percentage of benefits claimed by the union in the first and in the second scenario

game, P ∗

x and
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x , respectively. In both cases they are drawn against γ. Regime 1
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Figure 8: Solutions η± of the quadratic equation (44). Regime 2
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Figure 9: Percentage of fund surplus invested in the the risky asset by the firm in the first and

in the second scenario game, π∗

x and
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x , respectively. In both cases they are drawn against γ.
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Figure 10: Percentage of benefits claimed by the union in the first and in the second scenario
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x and
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