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Abstract

This paper investigates the first-order differentiability properties of the value function in

dynamic economic models with recursive preferences where the optimal policy may lie at

the boundary of the feasible set under several regular assumptions originating from the

static optimization theory plus an aditional asymptotic condition.
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1. Introduction

Most dynamic economic models presume an additive and separable functional across

states of nature and the existence of interior optimal solution. This discounted, time–separable

preference structure shares analytical tractability and mathematical simplification and the

interiority condition is helpful in characterizing the smoothness property of the value function,

as discussed in Benveniste and Scheinkman (1979).

The main purpose of this paper is to establish the first-order differentiability properties

of the value function with recursive utility, departing from the time additively separable

utility function and also dropping the interiority of the optimal policy. Several assumptions

mainly from the static optimization theory are postulated to circumvent the interiority

conditions: there exists some optimal choice in the interior of the domain and the gradient

of the saturated constraints is linearly independent as well as some asymptotic condition

due to the dynamic nature of the problem. Section 2 presents the aggregator approach to

recursive utility. The main results on the differentiability of the value function are considered

in Section 3. In Section 4 we apply the results to both the one-sector growth model and

heterogenous two-sector growth model. Finally, there is an appendix that contains some

auxiliary definitions and results.

2. Recursive utility defined by means of aggregators

Recursive utility could be recovered via the means of the aggregator approach as shown

in Lucas and Stokey (1984). Here we consider the following abstract optimization framework.

The state space is denoted by X ⊆ Rn. An accumulation path x = (xt)
∞
t=0 in X is said

to be feasible if xt+1 ∈ Γ(xt) for all t ≥ 0 starting from some initial condition x0 ∈ X, where

Γ : X −→ 2X is the feasible correspondence. Let Π(x0) denotes the collection of all feasible

paths from x0 and let A = {(x, y) : y ∈ Γ(x)} ⊂ X×X be the graph of Γ.

An aggregator is a function

W : A× R −→ R.

W(x, y, z) is interpreted as the utility enjoyed from now on if the pair (x, y) is feasible, i.e.,

y ∈ Γ(x), and if the accumulation path from tomorrow on yields z ∈ R utils as of tomorrow.

Definition 1. Given an aggregator W and L be the space of sequences (e0, e1, e2, . . . , ) with

et ∈ X, t = 0, 1, 2, . . ., we say that U : L → R is recursive if and only if

U(x) := U(x0, x1, · · · ) = W(x0, x1,U(1x)) (1)

where 1x := (x1, x2, · · · ) ∈ Π(x0).
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The usual time additively separable utility function could be nested in this formulation.

Given some initial value x0 ∈ X, the value function J (x0) = max
x∈Π(x0)

U(x). A path x∗ is

said to be optimal from x0 if x∗ ∈ Π(x0) and J (x0) = U(x∗). As shown in Boyd III (1990),

standard arguments show that the Bellman equation is given as:

J (x) = max
y∈Γ(x)

{W(x, y,J (y))}.

We will impose the following basic assumptions of continuity and convexity on the data.

(B1) : Γ is non-empty valued, compact valued and continuous, and its graph is a convex

set;

(B2) : W is concave and continuous on A× R;

(B3) : For any (x, y) ∈ A, the function z 7−→W (x, y, z) is nondecreasing.

These assumptions assure that the value function J is concave and continuous in X.

See the Appendix. Moreover, by the Maximum Theorem of Berge, the optimal policy

correspondence H : X → X defined as H(x) = argmaxy∈Γ(x) W(x, y,J (x)) is upper

hemi–continuous and compact valued.

Along the paper, a dynamic optimization problem (X,Γ,W) satisfies (B1)–(B3) above.

3. Differentiability of the value function

3.1. Assumptions

In order to establish differentiability of the value function we need some regularity

conditions for boundary solutions. Following Rincón-Zapatero and Santos (2009), we introduce

the main assumptions below:

(D1) : W is continuously differentiable in an open neighborhood of A× R.

(D2) : For each x ∈ int(X), there exists y ∈ H(x) with y ∈ int(X).

(D3) : There exists a finite collection of functions g = (g1, · · · , gm) with A = {(x, y) ∈
Rn × Rn : g(x, y) ≥ 0}. Each function gi : Rn × Rn −→ R is quasiconcave and

has continuous first-order partial derivatives for i = 1, 2, · · · ,m. Let s(x, y) = {i :

gi(x, y) = 0} denote the set of saturated constraints. Then for each x there exists

some y ∈ H(x) with y ∈ int(X) such that the rank of the matrix of partial derivatives

{Dyg
i(x, y) : i ∈ s(x, y)} is equal to #s(x, y).

(D1) is a smoothness assumption on the aggregator. (D2) allows us to select some

optimal solution in the interior of the domain. It is important not confuse this property
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with interiority of the optimal policy. (D3) says that the feasible correspondence is given

by a finite set of quasiconcave functions.

Let us denote with Dxg(x, y)(resp. Dyg(x, y)) the m × n matrix of partial derivatives

of g at (x, y) with respect to x = (x1, . . . xn)(resp. y = (y1, . . . yn)). Accordingly, the s× n
matrix Dxgs(x, y) (resp. Dygs(x, y)) is defined similarly. The s × n generalized inverse

matrix of Dygs is defined as Dyg
+
s (x, y) = (DygsDyg

>
s )−1Dygs(x, y) at each point (x, y),

where Dyg
>
s denotes the transpose matrix. We define an n× n matrix G as

G(x, y) :=

{
−Dxgs(x, y)>Dyg

+
s (x, y), if s(x, y) 6= ∅

On, if s(x, y) = ∅
, (2)

where On and In denotes the null matrix and the identity matrix of order n×n respectively.

Here G(x, y) stands for the matrix of the marginal rate of transformation between x and

y at the saturated constraints. Finally, ∂J denotes the superdifferential of J . Precise

definitions and further results are given in the Appendix.

3.2. Main result

Now we establish an envelope theorem in the framework of concave and non–smooth

optimization as follows:

Theorem 3.1. Consider a dynamic optimization problem (X,Γ,W). Let (D1)–(D3) be

satisfied. Then for any x0 ∈ int(X) and T ≥ 1, q0 ∈ ∂J (x0) if and only if there exists

qT ∈ ∂J (xT ) such that

q0 =

T−1∑
t=0

βtGt
{
DxW(xt, xt+1,J (xt+1)) +G(xt, xt+1)DyW(xt, xt+1,J (xt+1))

}
+ βTGT qT

(3)

where (xt+1)∞t=0 is an optimal path from x0, and for t = 1, 2, . . .

βt =

t∏
i=1

DzW(xi−1, xi,J (xi)), β0 = 1

Gt = G(x0, x1)G(x1, x2) · · ·G(xt−1, xt), G0 = In.

Expression (3) defines the superdifferential of the value function at the current state in

terms of the differential of the instantaneous utility and the superdifferential of the value

function evaluated at the optimal path, where βt plays the role of a non–constant discount

factor. Note that the Inada condition explored in the Appendix shows that ∂J (x0) is not

empty if the optimal path touches regions of the feasible set A.
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If we have the following asymptotic condition, then we could obtain that ∂J (x0) is a

singleton and thus proving that J is differentiable at x0.

(D4) : Let {xt+1}t≥0 be an optimal plan starting from x0 ∈ int(X). For all qT ∈ ∂J (xT ),

lim
T→∞

βTGT qT = 0 (4)

Remark 1. This asymptotic condition (D4) is automatically fulfilled in two simple cases.

First, if the optimal path is not at the boundary of the feasible correspondence at every

period of time, that is, if for some t, xt+1 ∈ int(Γ(xt)), then G(xt, xt+1) = On, since

s(xt, xt+1) = ∅; Second, if for some t with s(xt, xt+1) 6= ∅, then Dxgs(xt, xt+1) = 0, as it

happens when the saturated constraints are independent of x and then G(xt, xt+1) = On. In

both cases, GT = On for any T ≥ t.

Theorem 3.2. Consider a dynamic optimization problem (X,Γ,W). Let {xt+1}t≥0 be

an optimal plan satisfying (D1)–(D4) with x0 ∈ int(X). Then, the value function J (·) :

int(X) −→ R is differentiable at x0 and the derivative is given by

DxJ (x0) =

∞∑
t=0

βtGt
{
DxW(xt, xt+1,J (xt+1) +G(xt, xt+1)DyW(xt, xt+1,J (xt+1))

}
(5)

As explained above the theorem, (5) is a finite sum if either the optimal path is interior or

it saturates constraints at some T which are state-independent. The case with T = 1 is the

celebrated Mirman-Zilcha, Benveniste-Scheinkman envelope theorem for interior solutions.

In both cases,

DxJ (x0) = DxW(x0, x1,J (x1)).

However, Theorem 3.2 covers the general case where the optimal policy has the boundary

solution.

4. Optimal growth with recursive utility

In this section we study both the one-sector growth model and the two-sector heterogeneous

growth model with recursive utility.

4.1. One-sector and two-sector growth model with recursive utility

Consider an economy where there exists one non–negative capital stock kt on hand at

each period t. Let ct ∈ R+ denote the perishable consumption good satisfying ct+1 +kt+1 =

f(kt), t = 0, 1, . . ., where the production function f(·) satisfies f(·) ≥ 0 and f ′(·) ≥ 0.
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Let W(·, ·, ·) be an aggregator satisfying (B1)–(B3) and W(k, k′, z) = w(f(k) − k′, z),
where w : R+ × R −→ R is continuously differentiable and with the function c 7→ w(c, z)

being increasing for all z ∈ R.

The recursive formulation of the planner’s problem is

J (k) = max
{
w(f(k)− k′,J (k′)) : 0 ≤ k′ ≤ f(k)

}
.

The constraint correspondence is Γ(k) = [0, f(k)], whose graph is bordered by the functions

g1(k, k′) = k′ and g2(k, k′) = f(k) − k′. If the Inada condition f ′(0+) = ∞ holds, then

k′ = 0 cannot be optimal, as demonstrated in Corollary 1.2 of the Appendix, thus (D2)

is fulfilled. (D3) is always satisfied since Dk′g
1(k, k′) = 1 and Dk′g

2(k, k′) = −1 for every

(k, k′). Notice that the optimal path cannot have kt+1 = f(kt) for each t, since this implies

ct = 0 for every t, which is not optimal because w is strictly increasing in the first variable.

Thus, the optimal path becomes interior at some finite T , which implies (D4) as explained

in Remark 1.

In consequence, J is differentiable at some initial value k0 > 0. For a given k0 > 0 such

that the optimal k1, . . . , kT−1 satisfy kt = f(kt−1) and it is interior at some time T , that is,

0 < kT < f(kT−1), the derivative is given by

J ′(k0) =

T−1∑
t=0

βtGt{DkW(kt, kt+1,J (kt+1)) +G(kt, kt+1)Dk′W(kt, kt+1,J (kt+1))}

= βT−1GT−1DkW(kT−1, kT ,J (kT )),

where

β0 = 1, G0 = 1

βt =

t∏
i=1

DzW(ki−1, ki,J (ki)), t = 1, 2, . . . , T − 1

Gt =

t−1∏
i=0

f ′(ki), t = 1, 2, . . . , T.

The summatory function above simplifies since, for T ≥ 2, the summands from t = 0 to

T − 2 cancel out

DkW(kt, kt+1,J (kt+1)) +G(kt, kt+1)Dk′W(kt, kt+1,J (kt+1))

= f ′(kt)Dcw(ct,J (kt+1))− f ′(kt)Dcw(ct,J (kt+1))

= 0.
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The formulation in two–sector heterogenous growth model is omitted here for brevity

since it is essentially the same as that presented above.

5. Conclusion

This paper considers the problem of the smoothness of the value function in concave

dynamic problems with recursive utility where the optimal solution may belong to the

boundary of the feasible set. We formulate several conditions stemming from the static

theory and then establish the first-order differentiable properties of the value function with

recursive preference by adding an asymptotic condition. The results are then illustrated by

the one-sector growth model.
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