CORRIGENDUM TO "EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BELLMAN EQUATION IN THE UNBOUNDED CASE" (*Econometrica*, Vol. 71, No. 5, September 2003, 1519–1555)

By Juan Pablo Rincón-Zapatero and Carlos Rodríguez-Palmero

WE THANK JANUSZ MATKOWSKI AND ANDRZEJ S. NOWAK for pointing out an error in Proposition 1 and providing a counterexample¹. In the aforementioned result, the metric $d(f,g) = \sum_{j=1}^{\infty} 2^{-j} \frac{d_j(f,g)}{1+d_j(f,g)}$ considered is not a contraction on A, a bounded subset of $\mathcal{C}(X)$. However, a slight modification of d restores the result, once the condition $\sup_{j\geq 1} \beta_j = \beta < 1$ is imposed. This last condition is harmless in our setting, since all the applications we give satisfy this assumption.

Given a bounded set A with $\sup_{f,g\in A} d_j(f,g) \leq m_j$ (without loss of generality it can be considered $m_j > 0$ for each j), consider the metric

$$d_A(f,g) = \sum_{j=1}^{\infty} 2^{-j} \frac{d_j(f,g)}{m_j + d_j(f,g)}$$

This metric turns A into a complete metric space. The correct statement of Proposition 1 is then as follows.

PROPOSITION 1: Let $T : C(X) \mapsto C(X)$ be a 0-LC relative to A, a bounded subset of C(X) with bounds $\{m_j\}$, such that $\sup \beta_j = \beta < 1$. Then there exists $\alpha \in [0, 1)$ such that

$$d_A(Tf, Tg) \le \alpha \ d_A(f, g)$$
 for all $f, g \in A$.

PROOF. For $f, g \in A$, it follows

$$d_A(Tf, Tg) \le \sum_{j=1}^{\infty} 2^{-j} \ \frac{\beta_j d_j(f,g)}{m_j + \beta_j d_j(f,g)} \le \sum_{j=1}^{\infty} 2^{-j} \ a_j \ \frac{d_j(f,g)}{m_j + d_j(f,g)},$$

where $a_j = \beta_j (m_j + d_j(f,g))/(m_j + \beta_j d_j(f,g))$. Obviously, $a_j \leq 2\beta_j/(1 + \beta_j)$ for each j, since A is bounded and $(m_j + x)/(m_j + \beta_j x)$ is increasing with respect to x. Thus, $a_j \leq 2\beta/(1 + \beta) < 1$ for each j, and hence $d_A(Tf, Tg) \leq \alpha d_A(f,g)$ for $\alpha = 2\beta/(1 + \beta)$. Q.E.D.

In the reading of the proofs of THEOREMS 1, 3 and 6 and PROPOSITION 3, the metric d should be changed by the metric d_A for the results to hold. None of the remaining results are affected.

¹Matkowski and Nowak (2008) apply our concept of k-Local Contraction to stochastic dynamic programming.

Departamento de Economía, Universidad Carlos III de Madrid, C/ Madrid 126, E–28903 Getafe, Madrid, Spain; jrincon@eco.uc3m.es

and

Departamento de Economía Aplicada, Universidad de Valladolid, Avda. Valle Esgueva 6, E–47011 Valladolid, Spain; cpalmero@eco.uva.es

REFERENCES

MATKOWSKI, J. AND A.S. NOWAK (2008): "On Discounted Dynamic Programming with unbounded returns," unpublished manuscript.