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Abstract It is generally admitted that a correct forecasting of uncertain vari-
ables needs Markov decision rules. In a dynamic game environment, this belief
is reinforced if one focuses on credible actions of the players. Usually, subgame
perfectness requires equilibrium strategies to be constructed on Markov rules.
It comes as a surprise that there are interesting classes of stochastic differ-
ential games where the equilibrium based on open loop strategies is subgame
perfect. This fact is well known for deterministic games. We explore here the
stochastic case, not dealt with up to now, identifying different game structures
leading to the subgame perfectness of the open-loop equilibrium.
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1 Introduction

The quality and type of information available to the players at the time of tak-
ing their decisions in dynamic games is of the utmost importance. The outcome
of the game may have quite different properties. In general, the equilibrium
based on open-loop strategies is not subgame perfect, as the information is not
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enough for the players to play optimally at intermediate stages of the game.
On the contrary, closed-loop strategies, or more concretely, Markov strategies,
are in many cases the correct tool to construct a subgame perfect Nash equilib-
rium1. Moreover, in a stochastic game, playing with Markov strategies seems
to be the only way that the players may forecast the evolution of the uncertain
environment. It comes as a surprise that, in some cases, open-loop equilibrium
is subgame perfect, even in the presence of random shocks. Our purpose in
this paper is to identify stochastic differential games with this property.

To our knowledge, the identification of games for which the open loop
equilibrium is also a Markov Perfect Nash Equilibrium (MPNE henceforth),
is studied here for the first time for stochastic differential games. Mehlmann
[12] provides a nice synthesis of known deterministic games where the open
loop equilibrium is also subgame perfect. They are classified into the classes of
trilinear games, introduced by Clemhout and Wan [2], state redundant or sep-
arable games, Dockner et al. [3], Jorgensen et al. [10], and exponential games,
see Reinganum [13]. It is the class of exponential games where the treatment
given in Mehlmann [12], Theorem 4.9, is quite general, with arbitrary dimen-
sions in the state space and in the strategy spaces of the players. This is due
to the special structure of exponential games, and under a strong assumption,
which is that the Hamiltonian game admits a unique equilibrium with a given
functional dependence. This works well for the class of exponential games, but
seems not to be applicable to other classes of games. We avoid the assumption
on the Hamiltonian game and attack the problem directly, focusing on the
structural aspects of the data defining the game.

Fershtman [5] introduced the concept of classes of equivalence of games to
attack the problem for deterministic games. Two games are considered open-
loop (or closed-loop) equivalent if they have the same open-loop (or closed-
loop) Nash equilibria. It turns out that diffeomorphic transformations in the
state variable give rise to games in the same equivalence class. Then the issue is
to find a suitable transformation that leads the game into one where the open-
loop equilibrium is independent of the initial state condition. Undisputedly,
this is an elegant approach. To translate it to the stochastic case would be
an interesting exercise in using stochastic calculus. However, one limitation
with this approach is that the existence of solutions to the HJB equation
is not provided, and neither is an expression for the value function of the
players at hand. In consequence, the transformation approach does not indicate
a method on how to find the open-loop MPNE. This fact is also stressed
in Mehlmann [12]. We try a different approach, focusing on the structural
properties of the objects defining the game. In this way, we are able to give
the value function of the players in a quite explicit form. Our results hold for
arbitrary dimensions in the state space, but restrict ourselves to one strategy
foe each player. Under a typical concavity assumption on the Hamiltonian
of the players, we cover the classical classes of deterministic games for which

1 See Başar and Olsder [1], where the issue of information in dynamic games is thoroughly
analyzed. Also, Fershtman [6] provides a clever analysis of the meaning of open–loop and
closed–loop rules.
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the open loop Nash equilibrium is subgame perfect, giving true extensions,
providing testable hypothesis to sustain our findings, and more importantly,
also dealing with stochastic differential games.

The paper is organized as follows. Section 2 defines the class of stochas-
tic differential games we study and establishes the conditions for the game
to admit an open-loop MPNE. We start from a separable structure in state
and strategies, which allows us to cover most of the deterministic games al-
ready known to possess open-loop MPNE. Our main theorem not only provides
testable assumptions on the game structure, but identifies both the open-loop
MPNE and the value function of the players. The theory is applied to several
games. Some of them come from deterministic games, for which it is well known
that they admit open-loop MPNE. We show how the game could be extended
to become stochastic—in several ways—by maintaining this feature. Others
applications are new, even in the deterministic setting, where for instance we
discover a new type of game with a power structure with an open-loop MPNE.
An interesting application is given in Example 2, which studies the competition
of oligopolistic firms operating under demand uncertainty. Section 3 studies
the case where the game’s uncertainty is correlated. Section 4 introduces a
variation in the class of games studied in previous sections, by allowing an
additive structure in the player’s payoffs. Section 5 is devoted to some final
remarks.

2 The game, conditions for open-loop MPNE and applications

Consider a stochastic differential game in which

(i) N is the number of players;
(ii) The time horizon is finite and fixed, [0, T ];
(iii) A generic strategy of player i, denoted ui, takes values in a subset U i ⊆ R,

that is, we assume that the strategy space of each player is one dimen-
sional. A profile of strategies, u = (u1, . . . , uN ), consists of one strategy
for each player, and takes values in U = U1 × · · · × UN .

(iv) The vector of state variables X(t) = (X1(t), . . . , Xn(t)) ∈ Ω ⊆ Rn is
driven by the SDE

dXj(s) = Fj(s,X(s), u(s)) ds+Gj(s,X(s), u(s))dwj(s), X(t) = x,
(1)

t ≤ s ≤ T , for j = 1, . . . , n, where the functions Fj , Gj : [0, T ]×Ω×U −→
R are of class C2, and w1, . . . , wn are n independent standard Brownian
motions defined in a suitable probabilistic space with the usual filtration.
We will use lower case notation for the vectors x = (x1, . . . , xn) of the
state space Ω.

(v) The payoff of player i is defined as follows: given strategies for the rest of
players u−i = (u1, . . . , ui−1, ui+1, . . . , uN ), player i, i = 1, . . . , N , seeks
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to maximize

J i(t, x, u−i;u
i) = Etx

{ ∫ T

t

e−ρ
i(s−t) Li(s,X(s), ui(s), u−i(s)) ds

+ e−ρ
i(T−t)Si(T,X(T ))

}
,

(2)

where Etx denotes the conditional expectation with respect to the initial
condition (t, x) and where Li : [0, T ]×Ω×U −→ R and Si : [0, T ]×Ω −→
R are of class C2. The discount factor ρi ≥ 0 is supposed to be constant2.

(vi) We specify the following separable structure in strategies/state variables.

Li(t, x, u1, . . . , uN ) = `i(t, u1, . . . , uN )hi(x) + βi(t), i = 1, . . . , N,

Fj(t, x, u
1, . . . , uN ) = fj(t, u

1, . . . , uN )kj(x) + γj(t)mj(x), j = 1, . . . , n,

Gj(t, x, u
1, . . . , uN ) = gj(t, u

1, . . . , uN )nj(x), j = 1, . . . , n.

Definition 1 An open-loop strategy of player i is a time path function ui :
[0, T ] −→ U i. The set of all possible open-loop strategies of player i is denoted
as Oi.

Definition 2 A Markov strategy of player i is a decision rule function ui :
[0, T ]×Ω −→ U i that is continuous in t and uniformly Lipschitz in x for each
t. The set of all possible Markov strategies of player i is denoted as Mi.

Note that Oi ⊂ Mi, that is, an open-loop strategy is a (degenerate) Markov
strategy.

Definition 3 A Markov Perfect Nash Equilibrium (MPNE for short) is a pro-
file u∗ ∈M1 × · · · ×MN such that for all i = 1, . . . , N

J i(t, x, u∗−i; (ui)∗) ≥ J i(t, x, u∗−i;ui)

for all ui ∈Mi, for all initial condition (t, x) ∈ [0, T ]×Ω.

Note that for a profile of path functions λ(t) = (λ1(t), . . . , λN (t)) to be
a (degenerate) MPNE, λi(t) must be stable against any deviation ui(t, x) in
Mi, that is

J i(t, x, λ−i;λ
i) ≥ J i(t, x, λ−i;ui).

So, given the equilibrium strategies λ−i(t) of the rest of the players, player i
gains nothing by employing, instead of λi, any other decision rule that uses
the information provided by X at the time of taking the decision. Of course
this is why open-loop strategies are not, in general, subgame perfect.

A word on notation: what refers to players is indexed with superscripts,
whereas the rest of the vectors and functions are indexed with subscripts.
Given a function h and the vector x = (x1, . . . , xn), hx is the gradient of x

2 The results shown in the paper remain valid for a variable discount factor e−
∫ s
t ρ

i(r)dr,
where ρi(r) ≥ 0 is a continuous function. The changes in the equations shown in the paper
are straightforward.
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and hxx the Hessian matrix. When x is a real variable, derivatives are denoted
with primes, so h′ and h′′ are the first and second derivatives of h with respect
to x. Derivative with respect to time is denoted as d

dt . For two vectors x, y of
the same dimension, x · y =

∑n
j=1 xjyj is the scalar product.

Consider the following assumptions (A1)–(A2) listed below.

(A1) For (t, x, u, pi) ∈ [0,∞)×Ω × U × Rn and n× n symmetric matrix P i,
define the Hamiltonian

Hi(t, x, u, pi, P i) =Li(t, x, u) +

n∑
j=1

pijFj(t, x, u)

+
1

2
trace (G(t, x, u)G(t, x, u)>P i).

We suppose that for all i = 1, . . . , N , for any (t, x) ∈ [0,∞)×Ω, u−i ∈
U−i, p

1, . . . , pN and P i, the function

ui 7→ Hi(t, x, ui|u−i, pi, P i)

is strictly concave.
(A2) There are constants aij , b

i
j , c

i
j , d

i
j , r

i
j , q

i
j , s

i, ei, such that for all i =
1, . . . , N

n∑
j=1

aij
∂fj
∂ui

+
1

2

n∑
j=1

dij
∂(g2j )

∂ui
6= 0, (3)

and for all i = 1, . . . , N , for all j = 1, . . . , n

kj(x)
∂hi

∂xj
(x) = aijh

i(x) + qij ,

mj(x)
∂hi

∂xj
(x) = bijh

i(x) + cij ,

n2j (x)
∂2hi

∂x2j
(x) = dijh

i(x) + rij ,

Si(T, x) = sihi(x) + ei.

(4)

Also, the following conditions hold

n∑
j=1

qij
∂fj
∂ui

(t, u) = 0 (5)

n∑
j=1

rij
∂(g2j )

∂ui
(t, u) = 0 (6)

for all i = 1, . . . , N .
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Assumption (A1) is a usual concavity assumption. Regarding (A2), it es-
tablishes the structural form of the game that makes it possible for an open-
loop equilibrium to be subgame perfect. It requires that all data can be repro-
duced with the help of the function hi and its derivatives of first and second
order. It turns out that this is the structure of most of the (deterministic) dif-
ferential games identified in the literature as supporting an open-loop MPNE.
The virtue of (A2) is to isolate the central role of function hi and to allow for an
effective guess of the player’s value function. Once one makes the correct guess
for the value function, to solve for the maximizers in the player’s Hamiltonian
is more or less straightforward, but without the knowledge of the functional
form of the value function, solving the HJB system is often impossible. The
first two lines in (4) deal with the deterministic game and the third one deals
with the random shocks. Note that mj could be identically null, indicating
that the drift has no non-homogeneous term. Also, the third identity in (4) is
trivial if hi is linear. The case hi constant is excluded when gj is independent
of u, since, for the first line in (4) and (5), this would imply aij = 0 for all j,
contradicting (3). We will deal with this case afterwards, in Section 4.

Finally, the two conditions (5) and (6) in (A2) are a way to give a unified
treatment to the different characteristics of the game. The latter condition is
obviously fulfilled for arbitrary rij 6= 0 if the instantaneous variance does not
depend on the player’s strategies, Gj(t, x, u) ≡ Gj(t, x). Otherwise, in general,
we should take rij = 0. A similar comment applies to the former one. Observe

that in deterministic problems,
∂fj
∂ui 6= 0 is a non-degeneracy condition, in the

sense that the players influencing the evolution of the deterministic dynamics
is the usual framework. Thus, in deterministic games, qij = 0. However, in the

stochastic case, fj might be independent of u and then qij could be taken non
null in (A2).

A deterministic game satisfying the two first lines in (A2) does not need
to be state-separable (see Dockner et al. [3] for the conditions imposed on a
game for being state separable).

Let G(t, x, u) be the diagonal matrix with diagonal elements of the form
Gj(t, x, u) = gj(t, u)nj(x). For a function ϕi : [0, T ] × Ω −→ R of class C2,
denoting by ϕixx the Hessian matrix of ϕi, we obtain the following expression

trace (GG>ϕixx) =

n∑
j=1

g2jn
2
j

∂2ϕi

∂x2j
. (7)

Also, for i = 1, . . . , N , let the functions

ψi(t, u) =
− ∂`i

∂ui (t, u)∑n
j=1 a

i
j
∂fj
∂ui (t, u) + 1

2

∑n
j=1 d

i
j

∂(g2j )

∂ui (t, u)
, (8)

that are well defined, by (3).
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Theorem 1 Suppose that (A1) and (A2) hold and that the system of differ-
ential equations

0 =
d

dt
ψi(t, λ(t))− ρiψi(t, λ(t)) + `i(t, λ(t))

+ ψi(t, λ(t))
( n∑
j=1

aijfj(t, λ(t)) +

n∑
j=1

bijγj(t) +
1

2

n∑
j=1

dij(gj(t, λ(t)))2
)
,

(9)
with final condition

ψi(T, λ(T )) = si, (10)

for i = 1, . . . , N , admits a unique C1 solution λ(t) = (λ1(t), . . . , λN (t)), for
which the system of differential equations

0 =
d

dt
ζi(t)− ρiζi(t) + βi(t)

+ ψi(t, λ(t))
( n∑
j=1

qijfj(t, λ(t)) +

n∑
j=1

cijγj(t) +
1

2

n∑
j=1

rij(gj(t, λ(t)))2
)
,

(11)
with final condition

ζi(T ) = ei, (12)

for i = 1, . . . , N , admits a unique C1 solution (ζ1(t), . . . , ζN (t)). Then λ(t) is
an MPNE of the stochastic differential game (1), (2), and the value function
is

V i(t, x) = ψi(t, λ(t))hi(x) + ζi(t). (13)

Proof Let λ = (λ1(t), . . . , λN (t)) be the solution of (9) with final condition (10).
Note that (9) is uncoupled with (11). Let (ζ1(t), . . . , ζN (t)) be the solution of
(11) with final condition (12). We will show that (V 1, . . . , V N ), defined in (13),
satisfies the associated HJB system of PDEs3

−ρiV i(t, x) + V it (t, x) + max
v∈Ui

{
Hi(t, x, v|λ−i, V ix(t, x), V ixx(t, x))

}
= 0, (14)

for 0 ≤ t < T , and V i(T, x) = Si(T, x).

Let us compute Hi
ui(t, x, u, V

i
x , V

i
xx). We substitute below the expression

(7) for ϕi = V i, trace (GG>V ixx) =
∑n
j=1 g

2
j (t, u)n2j (x)∂

2V i

∂x2
j

. Obviously, each

V i is C1,2 with ∂2V i

∂t∂xj
= ∂2V i

∂xj∂t
. Moreover, ∂V

i

∂xj
= ψi ∂h

i

∂xj
and ∂2V i

∂x2
j

= ψi ∂
2hi

∂x2
j

. In

3 See Fleming and Rishel [7] or Dockner et al. [4] for details about the HJB equation.
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the computations below we use ψi(t) instead of ψi(t, λ(t)), to shorten notation.
We have, by using assumption (A2)

∂Hi

∂ui
(t, x, ui|λ−i, V ix , V ixx)

=
∂`i

∂ui
(t, ui|λ−i)hi(x) +

n∑
j=1

∂fj
∂ui

(t, ui|λ−i)kj(x)
∂V i

∂xj
(t, x)

+
1

2

n∑
j=1

∂(g2j )

∂ui
(t, ui|λ−i)n2j (x)

∂2V i

∂x2j
(t, x)

=
∂`i

∂ui
(t, ui|λ−i)hi(x) + ψi(t)

n∑
j=1

∂fj
∂ui

(t, ui|λ−i)kj(x)
∂hi

∂xj
(x)

+
1

2
ψi(t)

n∑
j=1

∂(g2j )

∂ui
(t, ui|λ−i)n2j (x)

∂2hi

∂x2j
(x)

=
∂`i

∂ui
(t, ui|λ−i)hi(x)

+ ψi(t)
( n∑
j=1

aij
∂fj
∂ui

(t, ui|λ−i) +
1

2

n∑
j=1

dij
∂(g2j )

∂ui
(t, ui|λ−i)

)
hi(x)

+ ψi(t)
���������n∑
j=1

qij
∂fj
∂ui

(t, ui|λ−i) +
1

2
ψi(t)

����������n∑
j=1

rij
∂(g2j )

∂ui
(t, ui|λ−i)

=

(
∂`i

∂ui
(t, ui|λ−i)

− ∂`i

∂ui
(t, λ)

∑n
j=1 a

i
j
∂fj
∂ui (t, u

i|λ−i) + 1
2

∑n
j=1 d

i
j
∂(g2j )

∂ui (t, ui|λ−i)∑n
j=1 a

i
j
∂fj
∂ui (t, λ) + 1

2

∑n
j=1 d

i
j

∂(g2j )

∂ui (t, λ)

)
hi(x).

To reach the last equality, we have used (5) and (6), as well as the definition
of ψi given in (8). The bottom line is identically 0 at ui = λi. Since, by (A1),
the Hamiltonian is strictly concave in ui for all i = 1, . . . , N , critical points
are unique and global maximum of the Hamiltonian. Thus,

Hi(t, x,

λ︷ ︸︸ ︷
λi|λ−i, V ix , V ixx) = max

v∈Ui
Hi(t, x, v|λ−i, V ix , V ixx) (15)

Let us check that the HJB system (14) holds. Plugging the expression of the
functions V i and its derivatives into the HJB system, using the structural
relations (A2) and (15), we have that the l.h.s of the HJB equation for player
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i is (we omit the arguments of some functions)

− ρiV i(t, x) + V it (t, x) +Hi(t, x, λ, V ix(t, x), V ixx(t, x))

= −ρiV i(t, x) +
∂V i

∂t
(t, x) + βi(t) +

n∑
j=1

γj(t)mj(x)
∂V i

∂xj
(t, x)

+ `i(t, λ)hi(x) +

n∑
j=1

fj(t, λ)kj(x)
∂V i

∂xj
(t, x)

+
1

2

n∑
j=1

g2j (t, λ)n2j (x)
∂2V i

∂x2j
(t, x)

= −ρi(ψihi + ζi) +

(
d

dt
ψi
)
hi +

d

dt
ζi + βi +

n∑
j=1

γjmj
∂hi

∂xj
ψi

+ `ihi +

n∑
j=1

fjkj
∂hi

∂xj
ψi +

1

2

n∑
j=1

g2jn
2
j

∂2hi

∂x2j
ψi

= hi

 d
dt
ψi +

−ρi +

n∑
j=1

bijγj +

n∑
j=1

aijfj +
1

2

n∑
j=1

dijg
2
j

ψi + `i


+

−ρiζi +
d

dt
ζi + βi + ψi

n∑
j=1

qijfj + ψi
n∑
j=1

cijγj +
1

2
ψi

n∑
j=1

rijg
2
j

 .
Both summands are 0 by (9) and (11), respectively. Thus, the HJB system of
PDEs holds. Now, the final condition. Note that V i(T, x) = ψi(T, λ(T ))hi(x)+
ζi(T ) = sihi(x) + ei ≡ Si(T, x), since λi(T ) is such that ψi(T, λ(T )) = si by
(10), and ζi(T ) = ei by (12). To finish the proof, we resort to a Verification
Theorem in Dockner et al. [4] that establishes that V i is the value function of
player i and then, that λ(t) is an MPNE. ut

Remark 1 The existence of a unique solution of (9) and final condition (10) in
the interval [0, T ] is not trivial, as the differential equations involved are non
linear. Suitable global Lipschitz bounds on the functions could be imposed
such that the existence of a unique solution is assured. This requires that the
system is not degenerate, in the sense that it is possible to solve for d

dtλ(t)
from

d

dt
ψi(t, λ(t)) = ψit(t, λ(t)) +

N∑
j=1

ψiuj (t, λ(t))
d

dt
λj(t),

which needs the N ×N matrix (ψiuj (t, u)) to be invertible.

In what follows, when the game has only one state variable, we will omit
subscripts in j. So, for instance, when n = 1, we will use X for X1, g(t, u) for
g1(t, u), or ai for ai1 in (A2), and the same for the rest of the constants and
variables.
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In all the examples below we will check that (A2) holds. The concavity
assumption (A1) will be checked in specific models. The coefficients ψi and
ζi(t) of the value function, as well as the open-loop MPNE λ(t), are determined
by (9), (10), (11) and (12). In order to save space, we will not write these
equations for every example, but only for those games which we can solve
explicitly. We take for granted the existence of solutions in the rest of examples.

Example 1 The following is Example 3.3 in Fershtman [5]. Consider the de-
terministic differential game with payoff

J i =

∫ T

t

δi(s)(li(s, u(s))(1−X(s)) + εi(s)X(s))ds, i = 1, . . . , N,

and the evolution of the state variable governed by

dX = f(s, u)(1−X)ds, X(t) = x.

This game, introduced by Fershtman, is a generalization of a one-player prob-
lems studied in Kamien and Schwartz [11]. Here, the state variable X(t) is
the cumulative probability that an event occurred before time t; li(t, u) is the
payoff to player i if the event did not occur; and εi(t) is the payoff to player i
if the event occurred prior to time t. Looking at its structure, the game is of
the linear state class; see in Section 2.3 below for a more general case.

If we rewrite the payoff functional as δi(t)(li(t, u)−εi(t))(1−x)+δi(t)εi(t),
then we identify `i(t, u) = δi(t)(li(t, u)−εi(t)), hi(x) = 1−x, βi(t) = δi(t)εi(t);
moreover, k(x) = 1 − x, m(x) = 0, n(x) = 0, and also ρi = 0. It is clear that
the first line in (4), k(hi)′ = aihi + qi, is fulfilled for ai = −1 and qi = 0.
Analogously for the remainder conditions in (A2), with bi = ci = di = ri = 0.
Assuming condition (A1) is satisfied, then the value function is V i(t, x) =
ψi(t, λ(t))(1− x) + ζi(t), where

ψi(t, u) =
δi(t) ∂l

i

∂ui (t, u)
∂f
∂ui (t, u)

,

by (8), and λ(t) = (λ1(t), . . . , λN (t)) satisfies (9), (10), while ζi also satis-
fies (11), (12). Under these premises, the game admits an open-loop MPNE
(already proved in Fershtman [5]).

2.1 Games with exponential structure in the state variable

Reinganum [13] introduced deterministic games with a linear-quadratic struc-
ture in the strategies and exponential in the state variable. Reinganum proved
that the open-loop equilibrium is subgame perfect. Later, Jørgensen [8] showed
the same property for games having an exponential structure also in the strate-
gies. Ferhstman [5] generalized this result by allowing any structure in the
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strategies (taking for granted that an MPNE exists, although not explicitly
stated). We analyze a stochastic extension of the game. It is defined by

J i =Etx

∫ T

t

e−ρ
i(s−t)`i(s, u(s)) exp (ai ·X(s))ds

+ e−ρ
i(T−t)siEtx exp (ai ·X(T )),

where ai = (ai1, . . . , a
i
n), and the dynamics is

dXj = fj(s, u)ds+ gj(s, u)dwj(s), j = 1, . . . , n.

We identify hi(x) = exp (ai · x), nj = 1, βi = γj = mj = 0 and kj = 1. Note
that Si(x) = sihi(x). It is easy to check that the rest of the conditions in (A2)
holds, with the constants as indicated

kj
∂hi

∂xj
= aij exp (ai · x) = aijh

i, (aij = ai, qij = 0)

n2j
∂2hi

∂x2j
= (aij)

2 exp (ai · x) = (aij)
2hi (dij = (aij)

2, rij = 0).

When the vector ai ≡ a = (a1, . . . , an) is the same for all players i = 1, . . . , N ,
the dynamics can be made more general

dXj = (fj(s, u) + γj(s)(bj + cj exp (−a ·X))) ds+ gj(s, u)dwj(s),

j = 1, . . . , N . We have

kj
∂hi

∂xj
= aj exp (a · x) = ajh

i, (aij = aj , q
i
j = 0)

mj
∂hi

∂xj
= (bj + cj exp (−a · x)) exp (a · x)aj = ajbjh

i + ajcj

(bij = ajbj , c
i
j = aj).

Within this case with ai ≡ a, if gj does not depend on u for all j = 1, . . . , n,
then we can consider a more general diffusion coefficient, n2j (x) = σ2

1j +

σ2
2j exp (−a · x), where σij are constants, i = 1, 2. Hence, the dynamics is

now

dXj = (fj(s, u) + γj(s)(bj + cj exp (−a ·X))) ds

+ gj(s)
√
σ2
1j + σ2

2j exp (−a ·X)dwj(s).

Let us check that (A2) holds.

n2j
∂2hi

∂x2j
= a2j

(
σ2
1j + σ2

2j exp (−a · x)
)

exp (a · x) = a2jσ
2
1jh

i + a2jσ
2
2j ,

so we identify dij = a2jσ
2
1j , r

i
j = a2jσ

2
2j for all i = 1, . . . , N , j = 1, . . . , n. Observe

that rij 6= 0 is possible since
∂gj
∂ui = 0 for all i, j, by (6).

According to Theorem 1, if condition (A1) holds and (9), (10), (11), (12)
admit solution, then there is an open-loop MPNE.
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2.2 Games with power structure in the state variable

We may extend Fershtman’s Example 3.4 in several dimensions and not only
because we consider the stochastic game. We can consider different powers of
x in the payoff functional for each player, and a more general drift term in the
dynamics.

2.2.1 Case 1

Let hi(x) = x
ai1
1 · · ·x

ain
n and let

dXj = fj(s, u)Xjds+ gj(s, u)Xjdwj(s), j = 1, . . . , N.

Hence, kj(x) = nj(x) = xj . It is easy to check that (A2) holds.

kj
∂hi

∂xj
= aijxjh

ix−1j = aijh
i, (qij = 0)

n2j
∂2hi

∂x2j
= aij(a

i
j − 1)x2jh

ix−2j = aij(a
i
j − 1)hi, (dij = aij(a

i
j − 1), rij = 0).

2.2.2 Case 2

Let α = (α1, . . . , αn), x = (x1, . . . , xn), and hi(x) = (α1x1 + · · · + αnxn)a
i

=

(α · x)a
i

. Let

dXj = fj(s, u)(α ·X)dt+ gj(s, u)(α ·X)dwj(s), j = 1, . . . , N.

(A2) holds

kj
∂hi

∂xj
= aiαj(α · x)(α · x)a

i−1 = aiαjh
i, (aij = aiαj , q

i
j = 0)

n2j
∂2hi

∂x2j
= ai(ai − 1)α2

j (α · x)2(α · x)a
i−2 = ai(ai − 1)α2

jh
i,

(dij = ai(ai − 1)α2
j , r

i
j = 0).

There are more possibilities in the case that a1 = · · · = aN = a. Then
hi(x) = (α ·X)a for all i = 1, . . . , N . Now let the dynamics be

dXj =
(
fj(s, u)(α ·X) + γj(s)(µj(α ·X) + νj(α ·X)1−a)

)
ds

+ gj(s, u)(α · x)dwj(s),

j = 1, . . . , N , where µj and νj are constants. Assumption (A2) is fulfilled.

kj
∂hi

∂xj
= aαj(α ·X)(α ·X)a−1 = aαjh

i, (aij = aαj , q
i
j = 0)

mj
∂hi

∂xj
= aαj(µj(α ·X) + νj(α ·X)1−a)(α ·X)a−1 = aαjµjh

i + aαjνj ,

(bij = aαjµj , c
i
j = aαjνj).
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Within the case with a1 = · · · = aN = a, assume further that gj is independent
of u for all j. Then a more general diffusion coefficient is possible. Now let the
dynamics be

dXj =
(
fj(s, u)(α ·X) + γj(s)(µj(α ·X) + νj(α ·X)1−a)

)
ds

+ gj(s)
√
σ2
1j(α ·X)2 + σ2

2j(α ·X)2−adwj(s),

j = 1, . . . , N , where σij are constants, i = 1, 2. Hence, n2j (x) = σ2
1j(α · x)2 +

σ2
2j(α·x)2−a. Let us check that the condition regarding the diffusion coefficient

in (A2) holds (the others have just been tested).

n2j
∂2hi

∂x2j
= (σ2

1j(α ·X)2 + σ2
2j(α ·X)2−a)a(a− 1)α2

j (α ·X)a−2

= a(a− 1)σ2
1jα

2
jh
i + a(a− 1)σ2

2jα
2
j .

Here dij = a(a − 1)σ2
1jα

2
j and rij = a(a − 1)σ2

2jα
2
j . As above, note that now

rij 6= 0 is admissible, by (6).
According to Theorem 1, if condition (A1) holds and (9), (10), (11), (12)

admit solution, then there is an open-loop MPNE.

Example 2 Consider a resource extraction game where N firms extract a
resource at rate ui, i = 1, . . . , N , in oligopolistic competition. The unitary
price of the resource is

p(x1, x2, u) = xb2

(
x1

N∑
i=1

ui
)−a

,

with 0 < a < 1, b ≥ 0, and where x1 > 0 is the resource stock, x2 > 0 is a
parameter defining the demand function and u is the strategy’s profile of the
players. Under exploitation, the resource follows the SDE

dX1 =
(
θX1 −

( N∑
j=1

uj
)
X1

)
ds+ σ1X1dw1(s), X1(t) = x1 > 0,

with θ ≥ 0 being the natural rate of growth of the population. Note that
f1(u) = θ −

∑N
j=1 u

j . The effort rate ui translates into an effective rate of

captures of x1u
i when the stock level of the resource is X1 = x1. Thus, the

lower the resource, the harder it is to maintain the effective extraction rate.
Demand varies stochastically, which is reflected in the parameter x2 = X2,
which follows the SDE

dX2 =
(
µ− ν

( N∑
j=1

uj
))
X2ds+ σ2X2dw2(s), X2(t) = x2 > 0.

The interpretation of the term f2(u) = µ − ν
(∑N

j=1 u
j
)

, where µ and ν are

constants, is that extraction effort affects future sales prices, maybe due to



14 Ricardo Josa-Fombellida, Juan Pablo Rincón-Zapatero

the possibility that the produced good can be stored through time—maybe
by using a suitable technology. So, the higher the global extraction effort, the
lower the expected future price of the good will fall. Under time path strategies,
both processes X1 and X2 almost surely remain positive.

Each firm seeks to maximize in ui

J i(t, x1, x2, u−i;u
i)

= Etx1x2

∫ T

t

e−ρ
i(s−t)p(X1(s), X2(s), u(s))ui(s)X1(s)ds

+ e−ρ
i(T−t)Etx1x2

(
p(X1(T ), X2(T ), u)X1(T )ui

)
= Etx1x2

∫ T

t

e−ρ
i(s−t)X1(s)1−aX2(s)bui(s)

( N∑
j=1

uj(s)
)−a

ds

+ e−ρ
i(T−t)siEtx1x2

(
X1(T )1−aX2(T )b

)
,

subject to the evolution of X1 and X2. The cost of extraction of the resource
is zero. The bequest function Si(T, x1, x2) = p(x1, x2, u)x1u

i accounts for
the value of the resource at the termination time T . The parameter ui ≡
ui(T ) stands for the extraction rate of the players at T—unknown so far—
and u = (u1, . . . , uN ). This unknown value will be fixed in equilibrium. We
think that this is one of the possible ways to fix the bequest at the terminal
time, something that is not always straightforward to do4. The constant si is

si = ui
(∑N

j=1 uj

)−a
. We identify `i(u) = ui

(∑N
j=1 u

j(s)
)−a

, hi(x1, x2) =

x1−a1 xb2, i = 1, 2, f1 and f2 as defined above, k1(x1, x2) = x1, k2(x1, x2) = x2,
m1(x1, x2) = m2(x1, x2) = 0, n1(x1, x2) = x1, n2(x1, x2) = x2. Moreover,
β1(t) = . . . = βN (t) = 0, γ1(t) = γ2(t) = 0, g1(t, u) = σ1, and g2(t, u) = σ2.
The game is one of power structure in the state variables studied above. In
fact

k1
∂hi

∂x1
= (1− a)hi, k2

∂hi

∂x2
= bhi,

n21
∂2hi

∂x21
= −a(1− a)hi, n22

∂2hi

∂x22
= −b(1− b)hi.

The function ψi in (8) is

ψi(u) =

(∑N
j=1 u

j
)−(1+a)((∑N

j=1 u
j
)
− aui

)
1− a+ bν

.

Since the game is symmetric, we look for a symmetric equilibrium. Thus, we
denote each individual strategy with λ = λ1 = · · · = λN (not to be confused

4 If no bequest function is imposed, then the extraction rate equilibrium becomes un-
bounded at the terminal time. The model is similar to that studied in Reinganum and
Stokey [14]. Uncertainty does not mitigate the problem.
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with a profile of strategies). Then ψ(u) = ψi(u, . . . , u) is given by

ψ(u) =
N−(a+1)(N − a)u−a

1− a+ bν
.

Moreover, `(u) = `1(u) = · · · = `N (u) = N−au1−a. Also, s = s1 = · · · = sN =
N−au1−a. The ODE (9) is

0 =
d

dt
ψ +N−au1−a − ρψ + ψ

(
− (1− a)Nu+ b(µ− νNu) + θ(1− a)

+
1

2

(
− σ2

1a(1− a)− σ2
2b(1− b)

))
.

Let the constants

A = ρ− θ(1− a) +
1

2
σ2
1a(1− a) +

1

2
σ2
2b(1− b)− bµ,

B =
(

(1− a)N + bνN
)
D

1
a −N−aD 1

a−1,

D =
N−(a+1)(N − a)

1− a+ bν
.

Using the equality ψ = Du−a, (9) can be written solely in terms of ψ as

ψ̇ = Aψ +Bψ1− 1
a .

It can be explicitly integrated

ln

(
Aψ(t)

1
a +B

As
1
a +B

)
=
A

a
(t− T ),

using ψ(T ) = s. Noting that ψ
1
a = D

1
aλ(t)−1, plugging in this value and

solving for λ(t), we get

λ(t) =
AD

1
a

(As
1
a +B)e

A
a (t−T ) −B

.

Now, in equilibrium, it must be λ(T ) = u, thus (D/s)
1
a = u. Since s =

N−1u1−a, we can solve for u = DN
a

1−a , thus s = (D/N)1−a, a value that
must be substituted into the expression of λ(t) given above to obtain

λ(t) =
AD

1
a

(AD
1
a−1N1− 1

a +B)e
A
a (t−T ) −B

.

On the other hand, the game satisfies the concavity condition (A1). To prove
this, compute the second derivative of `i with respect to ui

`iuiui(u
1, . . . , uN ) = −a

 N∑
j=1

uj

−a−22

N∑
j=1

uj − (a+ 1)ui

 ,
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which is negative, since 0 < a < 1 and 2
∑N
j=1 u

j−(a+1)ui = 2
∑
j 6=i u

j+(1−
a)ui > 0. As x1−a1 xb2 > 0 and both f1 and f2 are linear in ui, the Hamiltonian
Hi is strictly concave with respect to ui.

Consider the following variation regarding the demand parameter X2. Sup-
pose now that the extraction effort also affects the volatility of X2 according
to

dX2 =
(
µ− ν

( N∑
j=1

uj
))
X2ds+ σ2

( N∑
j=1

uj
) 1

2

X2dw2(s), X2(t) = x2 > 0.

Now g2(u) = σ2(
∑N
j=1 u

j)
1
2 and (6) holds. Thus, the greater the effort, the

higher the volatility in the demand function. The choice of this particular
functional form is due to the aim of solving explicitly for the MPNE, but
other choices would work as long as they respect the concavity assumption
(A1) and the existence of a unique solution of (9). This equation changes to

0 =
d

dt
ψ +N−au1−a − ρψ + ψ

(
− (1− a)Nu+ b(µ− νNu)

+ θ(1− a) +
1

2

(
− σ2

1a(1− a)− σ2
2b(1− b)Nu

)) (16)

which can be rewritten as ψ̇ = Ãψ + B̃ψ1− 1
a , where

Ã = ρ− θ(1− a)− bµ+
1

2
σ2
1a(1− a),

B̃ =
(

(1− a)N + bνN
)
D

1
a −N−aD 1

a−1 +
1

2
σ2
2b(1− b)ND

1
a .

The solution is obtained as in the above case, replacing the constants A and
B by the new ones, as well as computing the correct u. Moreover, the required
concavity of Hi is also fulfilled. It is not the aim of this paper to go further
into the study of this model.

Example 3 This is a modification of Yeung [15]. The game models a resource
extraction problem in a competitive environment. Firms try to maximize prof-
its in an oligopoly game with non-linear costs. In the original formulation, there
are multiple branching processes together with the continuous time random
fluctuations that drive the game’s stock dynamics and payoffs. We eliminate
the branching process but generalize some other aspects of the game as it is ex-
plained below. Yeung’s game is obtained when τ = 2 and C1 = · · · = CN = C,
s1 = · · · = sN = s, that is, when the game is symmetric. Throughout the ex-
ample, a, b, τ, σ and Ci, si, i = 1, . . . , N , are positive constants, with τ > 1.

maxvi Etx
∫ T
t
e−ρ

i(s−t)
(

vi(s)

(
∑N
j=1 v

j(s))
1
τ
− Ci vi(s)

(X(s))
1
τ

)
ds+ e−ρ

i(T−t)siEtxX(T )1−
1
τ

s.t.: dX =
(
aX

1
τ − bX −

∑N
j=1 v

j
)
ds+ σXdw(s), X(t) = x.
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Upon the substitution vi = uix, the game is transformed into

maxui Etx
∫ T
t
e−ρ

i(s−t)X1− 1
τ

(
ui(s)

(
∑N
j=1 u

j(s))
1
τ
− Ciui(s)

)
ds

+e−ρ
i(T−t)siEtxX(T )1−

1
τ

s.t.: dX =
(
aX

1
τ − bX −

(∑N
j=1 u

j
)
X
)
ds+ σXdw(s), X(t) = x.

Using our notation and letting 0 < κ = 1− 1
τ < 1

`i(u1, . . . , uN ) =
ui(∑N

j=1 u
j
)1−κ − Ciui,

f(u1, . . . , uN ) = −
N∑
j=1

uj .

Also, hi(x) = xκ, k(x) = x, m(x) = ax1−κ− bx, n(x) = σx, and Si(x) = sixκ.
Moreover, βi(t) = 0 for all i and γ(t) = g(t, u) = 1. Assumption (A2) holds,
with the constants given in the curved parenthesis below

k(x)(hi)′(x) = κxκ = κhi(x), (ai = κ, qi = 0)

m(x)(hi)′(x) = (ax1−κ − bx)κxκ−1 = −κbhi(x) + aκ,

(bi = −κb, ci = aκ)

n2(x)(hi)′′(x) = σ2x2κ(κ− 1)xκ−2 = σ2κ(κ− 1)hi(x),

(di = σ2κ(κ− 1), ri = 0)

Si(x) = sixκ = sihi(x),

for all i = 1, . . . , N . We do not carry out the computations to find explicitly
the open-loop MPNE (in the symmetric case, as the asymmetric one is hard),
as the problem is similar to the previous example.

2.3 Games with linear structure in the state variable

See Jorgensen et al [9] and Jorgensen et al [10] for an exhaustive analysis
of linear state deterministic games. Here we consider a special case. Let a =
(a1, . . . , an) and let hi(x) = a ·x+µ, where µ ∈ R. Let kj(x) = g(x) = a ·x+µ,
and mj(x) = G(x) = a · x+ µj , µj ∈ R for all j = 1, . . . , n. Hence, the payoff
functional of player i is

J i = Etx

∫ T

t

e−ρ
i(s−t)`i(s, u(s))(a ·X(s) + µ)ds+ e−ρ

i(T−t)Etx(a ·X(T )),

and the dynamics of the game is

dXj = (fj(s, u)(a ·X + µ) + γj(s)(a ·X + µj)) ds+ gj(s, u)nj(X)dwj(s),
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where nj is any function. Note that nj satisfies the third line of (4) in As-
sumption (A2). This is because the second derivative of hi vanishes. It is easy
to check that the rest of conditions in (A2) hold.

kj
∂hi

∂xj
= aj(a · x+ µ) = ajh

i, (aij = 0, qij = 0)

mj
∂hi

∂xj
= aj(a · x+ µj) = ajh

i + aj(µj − µ) (bij = aj , c
i
j = aj(µj − µ)).

There is a more ample class of linear state games that do not correspond to our
structural assumptions. This is due to the special characteristics of linearity in
the state variable. To cover this class of games, we should modify our approach.
As it is a rather particular case, and the class has been extensively studied in
the literature, both in theoretical and applied papers, we will not pursue this
issue any further and instead refer the interested reader to the papers cited
above.

Remark 2 We have supposed throughout this section that the diffusion ma-
trix is diagonal. To analyze the more general case where the diffusion matrix
is not diagonal is straightforward but cumbersome to write. Let us suppose
that the state variables X(t) = (X1(t), . . . , Xn(t)) ∈ Ω ⊆ Rn now are driven
by the SDE

dXj(s) = Fj(s,X(s), u(s)) ds+

n∑
k=1

Gjk(s,X(s), u(s))dwk(s), X(t) = x,

t ≤ s ≤ T , for j = 1, . . . , n, where the functions Fj , Gjk : [0, T ] × Ω ×
U −→ R are of class C2 and the standard Brownian motions w1, . . . , wn are
independent. Then (7) becomes

trace (GG>ϕixx) =

n∑
j=1

( n∑
k=1

G2
jk

)∂2ϕi
∂x2j

+ 2
∑
l<j

( n∑
j=1

n∑
k=1

GjkGlk

) ∂2ϕi
∂xjxl

=

n∑
j=1

( n∑
k=1

g2jk(njk)2
)∂2ϕi
∂x2j

+ 2
∑
l<j

( n∑
j=1

n∑
k=1

gjknjkglknlk

) ∂2ϕi
∂xjxl

,

(17)
for all i = 1, . . . , N, j, k, l = 1, . . . , n. It would be easy to update (A2) by using
the expression above.

3 The case of correlated Brownian motion

This section extends the previous results to the case where w1, . . . , wn are
correlated and the diffusion matrix is diagonal. The general matrix case with
correlated Brownian motions would give rise to a notationally more complex
situation that conceptually does not add much to the problem, hence it will
be avoided. Correlation means that there are constants −1 ≤ δjk ≤ 1 such
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that E(wj(t)wk(t)) = δjkt for j, k = 1, . . . , n. If wj and wk are independent,
then δjk = 0. Of course, δjk = δkj and δjj = 1, for all j, k. The modifications
are straightforward to do. It is only necessary to take into account that the
expression (7) becomes

trace(GG>ϕixx) =

n∑
j=1

g2jn
2
j

∂2ϕi

∂x2j
+ 2

n∑
j=1

∑
k<j

δjkgjgknjnk
∂2ϕi

∂xj∂xk
,

with the corresponding change in the HJB equation.
Assumption (A1) remains in force and (A2) changes to
(A2)’ There are constants aij , b

i
j , c

i
j , d

i
j , r

i
j , q

i
j , , d̃ijk, r̃ijk, si, ei, such that

for all i = 1, . . . , N

n∑
j=1

aij
∂fj
∂ui

+
1

2

n∑
j=1

dij
∂(g2j )

∂ui
+

n∑
j=1

∑
k<j

d̃ijkδjk
∂(gjgk)

∂ui
6= 0,

and for all i = 1, . . . , N , for all j, k = 1, . . . , n

kj(x)
∂hi

∂xj
(x) = aijh

i(x) + qij ,

mj(x)
∂hi

∂xj
(x) = bijh

i(x) + cij ,

n2j (x)
∂2hi

∂x2j
(x) = dijh

i(x) + rij ,

nj(x)nk(x)
∂2hi

∂xj∂xk
(x) = d̃ijkh

i(x) + r̃ijk, k < j,

Si(T, x) = sihi(x) + ei.

Also, the following conditions hold

n∑
j=1

qij
∂fj
∂ui

(t, u) = 0,

n∑
j=1

rij
∂(g2j )

∂ui
(t, u) + 2

n∑
j=1

∑
k<j

r̃ijkδjk
∂(gjgk)

∂ui
(t, u) = 0,

for all i = 1, . . . , N .

Also, it is necessary to redefine

ψi(t, u)

=
− ∂`i

∂ui (t, u)∑n
j=1 a

i
j
∂fj
∂ui (t, u) + 1

2

∑n
j=1 d

i
j

∂(g2j )

∂ui (t, u) +
∑n
j=1

∑
k<j d̃

i
jkδjk

∂(gjgk)
∂ui (t, u)

.

The proof of the following result is along the lines of Theorem 1, so it is
omitted. Modifications in the equations obtained are immediate.
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Theorem 2 Suppose that (A1) and (A2)’ hold and that the system of differ-
ential equations

0 =
d

dt
ψi(t, λ(t))− ρiψi(t, λ(t)) + `i(t, λ(t)) + ψi(t, λ(t))

( n∑
j=1

aijfj(t, λ(t))

+

n∑
j=1

bijγj(t) +
1

2

n∑
j=1

dijg
2
j (t, λ(t)) +

n∑
j=1

∑
k<j

d̃ijkδjk(gjgk)(t, λ(t))
)
,

(18)
with final condition

ψi(T, λ(T )) = si,

for i = 1, . . . , N , admits a unique C1 solution λ(t) = (λ1(t), . . . , λN (t)), for
which the system of differential equations

0 =
d

dt
ζi(t)− ρiζi(t) + βi(t) + ψi(t, λ(t))

( n∑
j=1

qijfj(t, λ(t))

+

n∑
j=1

cijγj(t) +
1

2

n∑
j=1

rijg
2
j (t, λ(t)) +

n∑
j=1

∑
k<j

r̃ijkδjk(gjgk)(t, λ(t))
)
,

with final condition

ζi(T ) = ei,

for i = 1, . . . , N , admits a unique C1 solution (ζ1(t), . . . , ζN (t)). Then λ(t) is
an MPNE of the stochastic differential game and the value function is

V i(t, x) = ψi(t, λ(t))hi(x) + ζi(t).

Example 4 Consider Example 2 above, where there is correlation −1 ≤ δ12 ≤
1 between w1 and w2. The additional condition in (A2)’

n1n2
∂hi

∂x1∂x2
= (1− a)bhi,

holds. Equation (18) now reads

0 =
d

dt
ψ +N−au1−a − ρψ + ψ

(
− (1− a)Nu+ b(µ− νNu) + γ(1− a)

)
+

1

2
ψ
(
− g21a(1− a)− g22b(1− b)

)
+ ψδ12g1g2(1− a)b.

It has an additional term ψδ12σ1σ2(1 − a)b in comparison to (16), but the
structure of the equation is the same.
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4 The case with additive structure in the payoffs

As promised, we now consider the case where hi is constant for all i = 1, . . . , N .
We fix the value hi = 1. This case was excluded in assumption (A2). We
suppose uncorrelated Brownian motions, in order to simplify the development.
The structure of the game is the same for the functions Fj and Gj , but Li can
be generalized somewhat to

Li(t, x, u1, . . . , uN ) = `i(t, u1, . . . , uN ) + χi(t)zi(x),

where we have included the term βi(t) in `i and where χi(t)zi(x) is an extra
term. Of course, χi could be identically null. Assumption (A2) is substituted
by (A2)” below

(A2)” There are constants aij , b
i
j , c

i
j , d

i
j , r

i
j , q

i
j , s

i, ei, such that for all i = 1, . . . , N

n∑
j=1

qij
∂fj
∂ui

+
1

2

n∑
j=1

rij
∂(g2j )

∂ui
6= 0,

and for all i = 1, . . . , N , for all j = 1, . . . , n

kj(x)
∂zi

∂xj
(x) = aijz

i(x) + qij ,

mj(x)
∂zi

∂xj
(x) = bijz

i(x) + cij ,

n2j (x)
∂2zi

∂x2j
(x) = dijz

i(x) + rij ,

Si(T, x) = sizi(x) + ei.

(19)

Also, the following conditions hold

n∑
j=1

aij
∂fj
∂ui

(t, u) = 0 (20)

n∑
j=1

dij
∂(g2j )

∂ui
(t, u) = 0 (21)

for all i = 1, . . . , N .

Note that if χi = 0, then the conditions involve the unknown functions zi

instead of hi (that in this case is identically 1) as in the case studied in the
previous section. If zi is not given, then it has to be found from the conditions
above, if possible.

Let the function ψi be defined for i = 1, . . . , N , by

ψi(t, u) =
− ∂`i

∂ui (t, u)∑n
j=1 q

i
j
∂fj
∂ui (t, u) + 1

2

∑n
j=1 r

i
j

∂(g2j )

∂ui (t, u)
,
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which is a bit different from that defined in (8). We have the following result,
whose proof mimics that of Theorem 1, so it is omitted.

Theorem 3 Suppose that (A1) and (A2)” hold and that the system of differ-
ential equations

0 =
d

dt
ψi(t, λ(t))− ρiψi(t, λ(t)) + χi(t)

+ ψi(t, λ(t))
( n∑
j=1

aijfj(t, λ(t)) +

n∑
j=1

bijγj(t) +
1

2

n∑
j=1

dij(gj(t, λ(t)))2
)
,

(22)

with final condition

ψi(T, λ(T )) = si, (23)

for i = 1, . . . , N , admits a unique C1 solution λ(t) = (λ1(t), . . . , λN (t)), for
which the system of differential equations

0 =
d

dt
ζi(t)− ρiζi(t) + `i(t, λ(t))

+ ψi(t, λ(t))
( n∑
j=1

qijfj(t, λ(t)) +

n∑
j=1

cijγj(t) +
1

2

n∑
j=1

rij(gj(t, λ(t)))2
)
(24)

with final condition

ζi(T ) = ei, (25)

for i = 1, . . . , N , admits a unique C1 solution (ζ1(t), . . . , ζN (t)). Then λ(t) is
an MPNE of the stochastic differential game and the value function is

V i(t, x) = ψi(t, λ(t))zi(x) + ζi(t).

Example 5 This is a stochastic version of the Eskimoean game; see Mehlmann
[12], p. 106, for the deterministic case. In this fishery game, the inverse demand
function is p(u) = 1

x
∑N
j=1 u

j , the marginal cost is Ci 6= 1 for all i = 1, . . . , N ,

and the fish population obeys

dX =
(
X(µ− δ lnX)−X

N∑
j=1

uj
)
ds+ σXdw(s).

The growth function m(x) = x(µ− δ lnx) is the Gompertz law of population
growth. The payoff of player i is

J i = Etx

∫ T

t

e−ρ
i(s−t)(p(u(s))X(s)− Ci)ui(s)ds+ sie−ρ

i(T−t)Etx lnX(T ).

Hence `i(u) = ui∑N
j=1 u

j − Ciui, which is strictly concave in ui, as it is easily

checked because `iuiui(u) = −2
∑
j 6=i u

j

(
∑N
j=1 u

j)3
< 0. The Hamiltonian Hi is strictly
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concave with respect to ui because f is linear in ui. Thus the game satisfies
the concavity condition (A1). Moreover, k(x) = x, f(u) = −

∑N
j=1 u

j , γ(t) = 1

and m was defined above. Function n(x) = σx, g(t, u) = 1 and Si(x) = si lnx.
Finally, hi = 1 and χi = 0.

The function zi(x) is unknown and it must be determined from conditions
(19). Observe that (19), first line, holds for zi(x) = lnx: k(zi)′ = aizi + qi,
where ai = 0 and qi = 1, for i = 1, . . . , N . The rest of the conditions are also
fulfilled

m(zi)′ = x(µ− δ lnx)
1

x
= bizi + ci,

for ci = µ and bi = −δ, i = 1, . . . , N . Also,

n2(zi)′′ = x2(−x)−2 = dizi + ri,

for di = 0 and ri = −σ2, i = 1, . . . , N . The fourth line holds for ei = 0, and
finally the first condition of (A2)’, (20) and (21) hold. Thus, (A1) and (A2)’
are fulfilled. We postulate the value function

V i(t, x) = ψi(t, λ(t)) lnx+ ηi(t).

Note that V i(T, x) = si lnx by (23) and (25).

The function ψi(u) = `iui(u) = Q−ui
Q2 −Ci, where Q =

∑N
j=1 u

j . Moreover,

the ODE (22) is

d

dt
ψi − (ρi + δ)ψi = 0, ψi(T ) = si,

where we are abusing notation, identifying ψ(t) with ψ(λ(t)). The solution is

ψi(t) = si exp (−(ρi + δ)(T − t)).

Solving for λ1(t), . . . , λN (t) is easy. From ψi(λ) = Q−λi
Q2 − Ci, Q =

∑N
j=1 λ

j ,
we obtain

λi(t) = Q(t)− (Ci + si exp (−(ρi + δ)(T − t)))Q(t)2,

where

Q(t) =
N − 1∑N

j=1(Cj + sj exp (−(ρj + δ)(T − t)))
.

We do not make the computations needed for getting ηi(t) from (24) because,
at least theoretically, it is straightforward.

A possible extension is to consider g(t, u) =
√∑N

j=1 u
j , that is to say,

dX =
(
X(µ− δ lnX)−X

N∑
j=1

uj
)
ds+ σX

√√√√ N∑
j=1

ujdw(s).

Condition (A1) holds because g2(t, u) is a linear function of ui; also, the first
line in (A2) is satisfied because 1

2σ
2 6= −1, as well as condition (21), since

di = 0. The functions ζi are computed the same as above.
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5 Conclusions

We have identified stochastic differential games where an MPNE exists based
on open-loop strategies. This is a natural extension of the corresponding results
for deterministic games obtained in the past decades. Maybe, the belief that
to construct an equilibrium that correctly forecasts the uncertain future needs
Markov rules, has deterred researchers from addressing this problem in the
stochastic case. We show in this paper that most of the known deterministic
games presenting open-loop MPNE may be extended to stochastic games—
in several ways—maintaining this feature. We obtain our results by focusing
on the structural form of the functions defining the game, which is a novel
approach. We based our results on the HJB equations, giving explicitly the
value functions of the players, as well as optimality conditions in the form
of ordinary differential equations that the open-loop equilibrium must satisfy.
Hence, our approach departs from that of—on the other hand elegant—state-
variable transformation of Fershtman [5] or Mehlmann [12], or those based on
the optimality conditions of the Maximum Principle. Although we concentrate
on known structures for the deterministic case: exponential, power and linear
structures, translating them to the stochastic case, our assumption (A2), that
specifies the relationship between the functions defining the games, would allow
us to construct other game models with this property. It is not that we are
recommending the construction of artificial ad hoc models. Rather, our findings
would play the role of testing whether a particular game reflects an interesting
model from economics, or operations research satisfies our assumptions, so
that a solution is readily available. Future research should focus on finding
general conditions guaranteeing the existence and uniqueness of solutions of
the Cauchy problems (9)-(10) and (11)-(12).
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