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Abstract

We develop tests for detecting possibly episodic predictability induced by a persistent predictor.

Our framework is that of a predictive regression model with threshold effects and our goal is to develop

operational and easily implementable inferences when one does not wish to impose à priori restrictions

on the parameters of the model other than the slopes corresponding to the persistent predictor. Differ-

ently put our tests for the null hypothesis of no predictability against threshold predictability remain

valid without the need to know whether the remaining parameters of the model are characterised by

threshold effects or not (e.g. shifting versus non-shifting intercepts). One interesting feature of our

setting is that our test statistics remain unaffected by whether some nuisance parameters are identified

or not. We subsequently apply our methodology to the predictability of aggregate stock returns with

valuation ratios and document a robust countercyclicality in the ability of some valuation ratios to

predict returns in addition to highlighting a strong sensitivity of predictability based results to the

time period under consideration.
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1 Introduction

Predictive regressions are simple regression models in which a highly persistent variable is used as a

predictor of a noisier time series. The econometric difficulties that arise due to the combination of a

persistent regressor and possible endogeneity have generated an enormous literature aiming to improve

inferences in such settings. Common examples include the predictability of stock returns with valuation

ratios, the predictability of GDP growth with interest rates amongst numerous others (see for instance

Valkanov (2003), Lewellen (2004), Campbell and Yogo (2006), Jansson and Moreira (2006), Rossi (2007),

Bandi and Perron (2008), Ang and Bekaert (2008), Wei and Wright (2013) and more recently Kostakis,

Magdalinos and Stamatogiannis (2015, KMS2015 thereafter)).

In a recent paper Gonzalo and Pitarakis (2012) have extended the linear predictive regression model

into one that allows the strength of predictability to vary across economic episodes such as expansions and

recessions. This was achieved through the inclusion of threshold effects which allowed the parameters

of the model to switch across regimes driven by an external variable. Within this piecewise linear

setting the authors developed a series of tests designed to detect the presence of threshold effects in all

the parameters of the model by maintaining full linearity within the null hypotheses (i.e. restricting

both intercepts and slopes to be stable throughout the sample). Differently put this earlier work was

geared towards uncovering regimes within a predictive regression setting rather than determining the

predictability of a particular predictor per se.

The goal of this paper is to develop a toolkit that will allow practitioners to test the null hypothesis of

no predictability induced by a persistent regressor explicitly without restricting the remaining parameters

of the model (e.g. intercepts may or may not exhibit threshold effects). Indeed, a researcher may wish to

assess the presence of predictability induced solely by some predictor xt while remaining agnostic about

the presence or absence of regimes in the remaining parameters. Moreover, in applications involving

return predictability with valuation ratios such as the dividend yield and a threshold variable proxying

the business cycle, rejection of the null of no predictability on the basis of a null hypothesis that restricts

all the parameters of the model as in Gonzalo and Pitarakis (2012) may in fact be driven by the state of

the business cycle rather than the regime specific predictability induced by the dividend yield itself.

The type of inference we consider in this paper naturally raises important identification issues which

we address by exploring the feasibility of conducting inferences on the relevant slope parameters that are

immune to any knowledge about the behaviour of the intercepts and in particular to whether the latter

are subject to regime shifts or not. Our null hypothesis of interest here allows for the possibility of having

nuisance parameters that may or may not switch across regimes. This is fundamentally different from

the setting considered in Gonzalo and Pitarakis (2012) where the intercepts were also restricted to be

equal under the null hypothesis of no predictability and the only nuisance parameter was the unknown

threshold parameter itself.

Our proposed inferences are based on a standard Wald type test statistic whose distribution we derive

under the null hypothesis of no predictability induced by a highly persistent regressor. The limiting

distribution of our test statistic evaluated at a particular location of the threshold parameter is then
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shown to be immune to whether the remaining parameters of the model shift or not. Since the limiting

distribution in question depends on a series of nuisance parameters it is not directly usable for inferences

unless one wishes to impose an exogeneity assumption on the predictor. Using an Instrumental Variable

approach we subsequently introduce a modified Wald statistic whose new distribution is shown to be

standard and free of nuisance parameters under a very general setting.

The plan of the paper is as follows. Section 2 presents our operating model and the underlying

probabilistic assumptions. Section 3 develops the large sample inferences. Section 4 illustrates their

properties and usefulness via a rich set of simulations. Section 5 applies our proposed methods to the

predictability of aggregate US equity returns using a wide range of valuation ratios and threshold variables

and Section 6 concludes.

2 The Model and Assumptions

We operate within the same setting as in Gonzalo and Pitarakis (2012). Our predictive regression model

with threshold effects or Predictive Threshold Regression (PTR) is given by

yt+1 = (α1 + β1xt)I(qt ≤ γ) + (α2 + β2xt)I(qt > γ) + ut+1 (1)

where the highly persistent predictor xt is modelled as the nearly integrated process

xt = ρTxt−1 + vt, ρT = 1− c

T
(2)

with c > 0 and qt = µq + uqt denoting the stationary threshold variable with distribution function F (.).

Before proceeding further it is useful to reformulate our specification in (1) in matrix form. In doing

so we make use of the property I(qt ≤ γ) ≡ I(F (qt) ≤ λ) ≡ I1t and I(qt > γ) ≡ I(F (qt) > λ) ≡ I2t

with λ ≡ F (γ) so that in what follows the threshold parameter can be referred to as as either γ or λ

interchangeably. We now rewrite (1) as

y = Qλα+Xλβ + u (3)

with Qλ = [I1 I2] and Xλ = [x1 x2] stacking the elements (I1t I2t) and (xtI1t xtI2t) respectively and

α = (α1 α2)′, β = (β1 β2)′. Given the assumptions that will be imposed on qt (e.g. strict stationarity and

ergodicity) it is useful to note that E[I1t] = λ and E[I2t] = 1− λ ∀t and throughout the paper it will be

understood that λ ∈ Λ = [λ, λ] with 0 < λ < λ < λ < 1. Note that (1) is the same parameterisation as

the one used in Gonzalo and Pitarakis (2012) but its key features are repeated here for self containedness

considerations. When relevant we will also refer to the true value of the threshold parameter as either γ0

or λ0.

Our main goal is to focus on the sole predictive power of xt without imposing any restrictions on

the α’s. Note for instance that a null hypothesis such as α1 = α2, β1 = β2 = 0 may be rejected solely

due to α1 6= α2 while continuing to be compatible with an environment in which xt has no predictive

content. It is this aspect that we wish to address in the present paper whose goal is to develop inferences

about the β’s without imposing any constraints on the α’s in the sense that they may or may not be
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regime dependent within the underlying DGP. More specifically we will be interested in exploring testing

strategies for testing the null hypothesis H0 : β1 = β2 = 0 while allowing the α’s to be free in the

background. This is an important departure from the framework in Gonzalo and Pitarakis (2012) where

we considered Sup over λ type tests of various null hypotheses which were also restricting the intercepts

themselves in addition to β1 and β2 (e.g. α1 = α2, β1 = β2 = 0). More importantly in this paper our

inferences will be based on a Wald statistic evaluated at a particular estimator of the threshold parameter

(as opposed to taking its supremum over λ) which ensures that its limiting distribution under β1 = β2 = 0

is unaffected by whether α1 = α2 or α1 6= α2 and is nuisance parameter free.

We next outline our operating assumptions regarding the probabilistic properties of ut, vt, qt and their

joint interactions. Throughout this paper we let the random disturbance vt be described by the linear

process vt = Ψ(L)evt with the polynomial Ψ(L) =
∑∞

j=0 ΨjL
j having Ψ(1) 6= 0, Ψ0 = 1 and absolutely

summable coefficients. We also let ζt = (ut, evt)
′ and introduce the filtration Ft = σ(ζs, uqs|s ≤ t).

ASSUMPTIONS A1: E[ζt|Ft−1] = 0, E[ζtζ
′
t|Ft−1] = Σ̃ > 0, suptEζ

4
it < ∞. A2: The sequence {uqt}

is strictly stationary, ergodic, strong mixing with mixing numbers αm such that
∑∞

m=1 α
1
m
− 1
r < ∞ for

some r > 2. A3: The probability density function fq(.) of qt is bounded away from zero and ∞ over each

bounded set.

Assumption A1 requires the error process driving (1) to be a martingale difference sequence with respect

to Ft hence ruling out serial correlation in ut (but not in vt or qt) while also imposing conditional

homoskedasticity. Both vt and qt are allowed to be sufficiently general dependent processes. This setting

mimics closely the standard framework used in the predictive regression literature (e.g. Campbell and

Yogo (2006), Jansson and Moreira (2006)) and is in fact slightly more general since we do allow vt

to be serially correlated. At this stage it is also important to clarify our stance regarding the joint

interactions of our variables. Our assumptions about the dependence structure of the random disturbances

together with the finiteness of moments requirements imply that a Functional Central Limit Theorem

holds for wt = (ut, utI1t−1, vt). More formally T−
1
2
∑[Tr]

t=1 wt ⇒ (Bu(r), Bu(r, λ), Bv(r)
′ = BM(Ω) with

Ω =
∑∞

k=−∞E[w0w
′
k]. Our analysis will impose a particular structure on Ω which governs and restricts

the joint interactions of ut, vt and qt. More specifically we impose

Ω =

 σ2
u λσ2

u σuvΨ(1)
λσ2

u λσ2
u λσuvΨ(1)

σuvΨ(1) λσuvΨ(1) σ2
eΨ(1)2

 (4)

where σ2
u = E[u2

t ], σ
2
e = E[e2

vt] and since E[utev,t−j ] = 0 we also write σuv = E[utvt] = E[utevt] =

σue. The chosen structure of Ω is general enough to encompass the standard setting used in the linear

predictive regression literature that typically imposes {ut, vt} to be a martingale difference sequence

and ut and vt solely contemporaneously correlated. Our assumptions allow us to operate within a similar

environment while also permitting the shocks to the threshold variable to be contemporaneously correlated

with ut and/or vt. As in Caner and Hansen (2001) and Pitarakis (2008), Bu(r, λ) refers to a two-

parameter Brownian Motion which is a zero mean Gaussian process with covariance kernel (r1 ∧ r2)(λ1 ∧
λ2)σ2

u so that we implicitly also operate under the requirement that E[u2
t |qt−1, qt−2, . . .] = σ2

u as well

as E[utvt|qt−1] = E[utvt] ≡ σuv and E[utvt−k|qt−1, qt−2, . . .] = 0 ∀k ≥ 1. Given our nearly integrated

specification for xt and A1-A3 above it is also clear (see Phillips (1988)) that x[Tr]/
√
T ⇒ Jc(r) with
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Jc(r) = Bv(r) + c
∫ r

0 e
(r−s)cBv(s)ds denoting a scalar Ornstein-Uhlenbeck process. For later use we also

define the demeaned versions of Jc(r) and Bu(r) as J∗c (r) = Jc(r)−
∫
Jc(r) and B∗u(r) = Bu(r)−

∫
Bu(r).

3 Large Sample Inference

Since within model (1) the null hypothesis H0 : β1 = β2 = 0 is compatible with either α1 = α2 or α1 6= α2

in a first instance it will be important to establish the large sample properties of our threshold parameter

estimator λ̂ (or γ̂) under the two alternative scenarios on the intercepts. As our focus is on inferences

about β and mainly for notational convenience it will also be useful to reparameterise (3) in its canonical

form. More specifically, letting MQ = I −Qλ(Q′λQλ)−1Qλ we can equivalently express (3) as

y∗ = X∗λ β + u∗ (5)

with y∗ = MQy, X∗λ = MQXλ and u∗ = MQu.

3.1 Threshold Parameter Estimation

The threshold parameter estimator we consider throughout this paper is based on the least squares

principle and defined as

λ̂ = arg min
λ
ST (λ) (6)

with ST (λ) denoting the concentrated sum of squared errors function obtained from (3) or (5) under

the restriction β1 = β2 = 0 i.e. ST (λ) = y′MQy. Recall that throughout this paper we use λ̂ and

γ̂ = arg minγ ST (γ) interchangeably. Naturally, the behaviour of λ̂ is expected to depend on whether

the underlying true model has α1 6= α2 (i.e. identified threshold parameter) or α1 = α2 in which case

λ vanishes from the true model. The following Proposition summarises the large sample behaviour of λ̂

under the two scenarios.

Proposition 1. Under Assumptions A1-A3, H0 : β1 = β2 = 0 and as T → ∞ we have (i) T |λ̂ − λ0| =
Op(1) when α1 6= α2 and (ii) λ̂

d→ λ∗ with λ∗ = arg maxλ∈Λ[Bu(λ)− λBu(1)]2/λ(1− λ) when α1 = α2.

When β1 = β2 = 0 is imposed on the fitted model and α1 6= α2 we have a purely stationary mean shift

specification and the result in part (i) of Proposition 1 is intuitive and illustrates the T-consistency of the

least squares based threshold parameter estimator. This is in fact a well known result in the literature

which we report for greater coherence with our subsequent analysis (see Hansen (2000) and Gonzalo and

Pitarakis (2002)). The result in part (ii) of Proposition 1 is particularly interesting and highlights the fact

that the threshold parameter estimator obtained from a model that is linear and contains no threshold

effects converges in distribution to a random variable given by the maximum of a normalised squared

Brownian Bridge process. Although the maximum of a Brownian Bridge is well known to be a uniformly

distributed random variable an explicit expression or closed form density for λ∗ is to our knowledge not

available in the literature.
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We next concentrate on the limiting distribution of a Wald type test statistic for testing H0 : β1 =

β2 = 0 in (1).

3.2 Testing H0 : β1 = β2 = 0

Using the canonical representation in (5) and for a given λ ∈ (0, 1) we can write the standard OLS based

Wald statistic for testing H0 : β1 = β2 = 0 as

W ols
T (λ) = β̂(λ)′(X∗′λ X

∗
λ)β̂(λ)/σ̂2

u(λ) (7)

with β̂(λ) = (X∗′λ X
∗
λ)−1X∗′λ y and σ̂2

u(λ) referring to the residual variance estimated from the unrestricted

specification. In what follows W ols
T (λ̂) will denote the Wald statistic evaluated at the estimated threshold

parameter λ̂ as defined in (6) and its limiting behaviour is summarised in the following Proposition.

Proposition 2 Under the null hypothesis H0 : β1 = β2 = 0, assumptions A1-A3 and as T →∞ we have

W ols
T (λ̂) ⇒

[∫
J∗c (r)dBu(r, 1)

]2
σ2
u

∫
J∗c (r)2

+ χ2(1) (8)

regardless of whether α1 = α2 or α1 6= α2.

Proposition 2 highlights the usefulness of the Wald statistic for conducting inferences about the β′s

without having to take a stand on whether the α′s are regime dependent or not. The interesting point

here is the fact that the limiting distribution of the Wald statistic evaluated at λ̂ is the same regardless of

whether α1 = α2 or α1 6= α2 in the underlying model. One shortcoming of our expression in (8) is caused

by the presence of the unknown noncentrality parameter c making it difficult to tabulate in practice. Due

to the allowed correlation between Bu and Bv it is also the case that the first component in the right

hand side of (8) will depend on σuv. There is however an instance under which the limiting distribution

simplifies considerably as summarised in Proposition 3 below.

Proposition 3 Under the null hypothesis H0 : β1 = β2 = 0, assumptions A1-A3 together with the

requirement that σuv = 0 in (4) and as T →∞ we have

W ols
T (λ̂) ⇒ χ2(2) (9)

regardless of whether α1 = α2 or α1 6= α2.

The above result highlights a unique scenario whereby the magnitude of the noncentrality parameter

no longer enters the asymptotics of the Wald statistic despite a nearly integrated parameterisation in

the DGP. See also Rossi (2005) for interesting similarities between our asymptotics in Proposition 2 and

distributions arising within a related structural break framework.

In order to address the limitations of our result in (8) we next introduce an Instrumental Variable

based Wald statistic designed in such a way that its limiting distribution remains a nuisance parameter

free χ2(2) random variable regardless of whether σuv is zero or not. This is achieved through an IV method

developed in Phillips and Magdalinos (2009) in the context of the cointegration literature and which we

adapt to our current context (see also Breitung and Demetrescu (2014)). The key idea is to instrument
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xt with a slightly less persistent version of itself using its own innovations (hence the IVX terminology).

Letting φT = (1− cz/T δ) for some cz > 0 (say cz = 1 as discussed in Phillips and Magdalinos (2009) and

KMS2015) and δ ∈ (0, 1) the IVX variable is constructed as h̃t =
∑t

j=1 φ
t−j
T ∆xj . Within our present

context and for i = 1, 2 we instrument xtIit in (1) with h̃tIit. Letting h̃i denote the vector stacking the

h̃tI
′
its and Hλ = [h̃1 h̃2] the IVX estimator of β in (5) can be formulated as

β̂ivx(λ) = (H∗′λ X
∗
λ)−1H∗′λ y

∗ (10)

with H∗λ = MQHλ. Noting that the projection PQ = Qλ(Q′λQλ)−1Q′λ is effectively analogous to applying

a regime specific demeaning the above formulation of the IVX estimator also helps highlight its invariance

to using either Hλ or H∗λ as IVs since H∗′λ X
∗
λ = H ′λX

∗
λ and H∗′λ y

∗ = H ′λy
∗. The IV based Wald statistic

for testing β1 = β2 = 0 in (1) (or (5)) can now be formulated as

W ivx
T (λ) = β̂ivx

[
(H∗′λ X

∗
λ)−1(H∗′λ H

∗
λ)(H∗′λ X

∗
λ)−1

]−1
β̂ivx/σ̂2

u(λ) (11)

and its limiting distribution is summarised in Proposition 4 below.

Proposition 4 Under the null hypothesis H0 : β1 = β2 = 0, assumptions A1-A3 and as T →∞ we have

W ivx
T (λ̂)⇒ χ2(2) regardless of whether α1 = α2 or α1 6= α2.

The above result provides a convenient test statistic for testing H0 : β1 = β2 = 0 since inferences can

be based on a limiting distribution that does not depend on c or any endogeneity induced parameter (as

opposed to our formulation in (8)) and are immune to whether the intercepts shift or not. The parameter

δ used in the construction of the IVX variables controls the degree of persistence of the instruments and

plays a key role in ensuring that the Wald based asymptotics are free of the influence of the noncentrality

parameter c. It is also important to highlight the fact that although δ is a necessary user-input in the

construction of W ivx
T (λ̂) it does not play any role in its limiting distribution which is nuisance parameter

free and valid for all δ ∈ (0, 1). This of course does not preclude the fact that particular choices of δ

may have important finite sample effects and size/power tradeoffs when basing inferences on W ivx
T (λ̂), an

issue we explore and address below.

As shown in KMS2015 and Phillips and Magdalinos (2009) and as it is also the case for our estimator

in (10) the price to pay for the convenient mixed normal limit of β̂ivx which in turn leads to the χ2

approximation of the associated Wald statistic is a rate of convergence that is slightly lower than T

and given by O(T
1+δ

2 ), suggesting that a choice of δ that is close to 1 may be the most appropriate

when constructing the IVX variables. This is an issue we document and explore comprehensively in the

simulations that follow but before doing so we wish to discuss in greater detail the key factors that may

influence the impact of δ on the finite sample size and power properties of W ivx
T (λ̂) such as the strength of

the correlation between ut and vt and adapt the practical recommendations of KMS2015 to our predictive

threshold context.

Our Monte-Carlo simulations below robustly demonstrate that for moderate degrees of correlation

between ut and vt our IVX based statistic displays excellent size control regardless of the magnitude of δ

and a power that increases with δ albeit stabilising for magnitudes in the vicinity of 0.9. This naturally

suggests that a choice of δ in the range [0.85, 0.95] should offer a good compromise between finite sample
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size and power with only minor finite sample implications whether one uses δ = 0.85 or δ = 0.95 or another

magnitude of similar order. When the correlation between ut and vt is allowed to be close to 1 however as it

may happen in numerous finance applications inferences based on W ivx
T (λ̂) are characterised by important

size distortions that increase and deteriorate with δ. These finite sample properties we observe within

our setting mirror exactly the properties of the IVX Wald statistic documented in the linear predictive

regression setting of KMS2015 and prompted the authors to introduce an intuitive finite sample correction

to the formulation of their IVX based Wald statistic which they show offers excellent size control even

under strong degrees of endogenity combined with a power that grows as δ approaches 1. The proposed

finite sample correction does not alter the first order asymptotic approximation of the IVX based Wald

statistic hence allowing KMS2015 to argue that for practical purposes their proposed correction resolves

the issue of choosing a suitable δ. Size is perfectly controlled regardless of the magnitude of δ while

power increases monotonically with δ and mirroring our earlier point above stabilises for magnitudes in

the vicinity of 0.85-0.95. This naturally leads us to adapt the finite sample correction of KMS2015 to our

own specification with threshold effects. It is important to reiterate however that the proposed correction

aplied to W ivx
T (λ̂) does not affect its first order limit theory which remains as in Proposition 4.

The limiting χ2 result in (11) naturally originates in the mixed Gaussianity of β̂ivx in turn driven by the

normality of a suitably normalised version of H∗′λ u
∗ ≡ H ′λu∗ = H ′λu−H ′λQλ(Q′λQλ)−1Q′λu in (10) with the

second component H ′λQλ(Q′λQλ)−1Q′λu arising due to the presence of fitted intercepts (recall that Qλ =

[I1 I2]) and which vanishes asymptotically. The first order asymptotic behaviour of H ′λu
∗ is driven by the

asymptotic normality of a normalised version of H ′λu. Although the second component H ′λQ(Q′Q)−1Q′u

vanishes asymptotically its presence can cause significant finite sample distortions compared to a setting

with no fitted intercepts, distortions that are further amplified when the degree of correlation between

ut and vt is large. KMS2015’s correction which we adapt here is motivated by the need to neutralise this

finite sample impact induced by the fitted intercepts and in proportion to how strongly correlated ut and

vt are. The finite sample corrected W ivx
T (λ̂) adapted to our present context can be formulated as

W ivxc
T (λ) = β̂ivx′(λ)

[
(H∗′λ X

∗
λ)−1Gλ(H∗′λ X

∗
λ)−1

]−1
β̂ivx(λ) (12)

with

Gλ = σ̂2
u(λ)

(
H∗′λ H

∗
λ + ρ̂2

uvH
′
λQλ(Q′λQλ)−1Q′λHλ

)
(13)

and where ρ̂2
uv = ω̂2

uv/σ̂
2
uω̂

2
v . Here ω̂uv denotes an estimator of the long run covariance between ut

and vt and ω̂2
v an estimator of the long run variance of the v′ts (see (4)). Note for instance that the

correction in (13) will have little impact for small magnitudes of ρuv while playing an important finite

sample adjustment role when the correlation between ut and vt is large, effectively neutralising the finite

sample distortions resulting from the fitted intercepts. It is also useful to point out that when suitable

normalisations are applied to W ivxc
T (λ̂) defined above, the correction term adjacent to ρ̂2

uv will vanish

asymptotically. Both ω̂uv and ω̂2
v can be estimated in a straightforward manner using Newey-West type

estimators. For this purpose we proceed as in KMS2015 introducing a bandwidth parameter KT such
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that KT →∞ and KT /
√
T → 0 as T →∞ and using

ω̂2
v =

1

T

T∑
t=1

v̂2
t +

2

T

KT∑
`=1

(
1− `

KT + 1

) T∑
t=`+1

v̂tv̂t−`

ω̂uv =
1

T

T∑
t=1

ûtv̂t +
1

T

KT∑
`=1

(
1− `

KT + 1

) T∑
t=`+1

v̂tût−` (14)

in the construction of W ivxc
T (λ̂). Our next goal is to comprehensively evaluate the finite sample properties

of our IVX based test statistics with a particular emphasis on documenting the role played by δ and how

best to select its magnitude in applied work.

4 Finite Sample Evaluation

The goal of this section is twofold. First we wish to demonstrate the validity and finite sample accuracy

of our theoretical results presented in Propositions 2-4 through simulations. Second we wish to use our

simulations to comprehensively illustrate the potential influence of δ on the finite sample size/power

tradeoffs of our test statistics with the aim of achieving clear and reliable practical recommendations

for the implementation of our IVX based statistics (e.g. for a broad range of experiments we consider

magnitudes of δ ranging between 0.50 and 0.98 with increments of size 0.02). Due to space considerations

we only present key outcomes while relegating a broad range of additional and supportive simulations to

an online appendix.

We initially concentrate on the size properties of our test statistics. Our chosen DGP is given by

(1) with β1 = β2 = 0. For the parameterisation of the intercepts we consider two scenarios. Namely,

{α1, α2} = {1, 1} and {α1, α2} = {1, 3}. In the latter case we set γ0 = 0.25 with the threshold variable

taken to follow the AR(1) process qt = 0.5qt−1+uqt while we set vt = 0.5vt−1+evt for the shocks associated

with the nearly integrated variable xt. Finally we take (ut, evt, uqt) to be a Gaussian vector with covariance

given by Σ = {(1, σuv, σuq), (σuv, 1, σeq), (σuq, σeq, 1)}. We initially focus on a scenario characterised by

σuv = 0 and subsequently consider the more general case that allows contemporaneous correlations across

all random disturbances. In this context we are particularly interested in the potential role played by a

very strong correlation between ut and vt and how this may in turn interact with alternative choices of δ.

For these reasons we conduct all our simulations by considering σuv ∈ {−0.9,−0.6,−0.3, 0.0} and setting

(σuv, σuq, σeq) = (σuv, 0.2, 0.2).

We are initially interested in illustrating our result in Proposition 3 stating that the limiting distri-

bution of the OLS based Wald statistic for testing H0 : β1 = β2 = 0 in (1) is χ2(2) regardless of whether

α1 = α2 or α1 6= α2 and regardless of the magnitude of the noncentrality parameter c appearing in the

DGP. Table 1 below displays the simulated finite sample critical values of W ols
T (λ̂) together with those

of the χ2(2) under c = 1 and c = 10. Overall we note an excellent match of the simulated quantiles

with their asymptotic counterparts. It is also clear that varying c has little impact on the quantiles as

expected by our theoretical result. Perhaps more importantly we note the robustness of the estimated

quantiles to the two scenarios about the α′s. Even under moderately small sample sizes such as T = 200
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the cutoffs of the asymptotic distribution of W ols
T (λ̂) under α1 = α2 and α1 6= α2 remain extremely close

as again confirmed by our theory.

Table 1: Simulated Quantiles of W ols
T (λ̂) versus χ2(2) under σuv = 0

10.0% 5.0% 2.5% 10.0% 5.0% 2.5%

χ2
2 4.610 5.990 7.380 4.610 5.990 7.380

α1 = α2, c = 1 α1 6= α2, c = 1
T=200 4.508 5.795 7.167 4.521 5.880 7.354
T=400 4.708 6.089 7.433 4.779 6.341 8.159
T=1000 4.692 5.981 7.418 4.592 5.723 6.948

α1 = α2, c = 10 α1 6= α2, c = 10
T=200 4.481 6.056 7.841 4.494 5.959 7.381
T=400 4.561 6.094 7.638 4.619 5.845 7.287
T=1000 4.668 6.027 7.439 4.400 6.027 7.228

We next, concentrate on our IVX based Wald statistics and evaluate their empirical size properties

across alternative scenarios on the σuv’s and δ’s. As a benchmark scenario Table 2 initially reports

empirical sizes for the σuv = 0 case which as expected corroborate our quantile based results of Table 1

while also highlighting the adequacy of W ivx
T (λ̂) and W ivxc

T (λ̂) when neither would have been truly needed

here due to exogeneity. It is also important to note that size is very accurately controlled regardless of

the magnitude of δ including magnitudes in the vicinity of 1.

Table 2: Empirical Size of W ivx
T (λ̂), W ivxc

T (λ̂) and W ols
T (λ̂) (5% Nominal), σuv = 0.0

δ δ
δ 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.70 0.74 0.78 0.82 0.86 0.90 0.94

W ivx
T (λ̂) α1 = α2, c = 1 α1 6= α2, c = 1

T=200 4.35 4.55 4.60 4.60 4.60 4.80 4.80 4.40 4.50 4.85 4.50 4.85 5.00 5.00
T=400 4.70 4.40 4.55 4.70 4.90 5.05 5.00 5.15 5.10 5.25 5.40 5.70 6.05 6.40
T=1000 5.40 5.25 5.45 5.20 5.40 5.45 5.70 4.20 4.50 4.60 5.05 4.95 4.75 4.75

W ivxc
T (λ̂) α1 = α2, c = 1 α1 6= α2, c = 1

T=200 4.35 4.50 4.55 4.55 4.55 4.65 4.75 4.35 4.40 4.60 4.40 4.70 4.60 4.75
T=400 4.65 4.30 4.55 4.70 4.85 5.05 4.90 5.15 5.10 5.25 5.35 5.65 6.05 6.35
T=1000 5.40 5.25 5.45 5.10 5.40 5.35 5.65 4.15 4.45 4.50 5.00 4.95 4.70 4.60

W ols
T (λ̂) α1 = α2, c = 1 α1 6= α2, c = 1

T=200 4.65 4.65 4.65 4.65 4.65 4.65 4.65 4.75 4.75 4.75 4.75 4.75 4.75 4.75
T=400 5.35 5.35 5.35 5.35 5.35 5.35 5.35 6.25 6.25 6.25 6.25 6.25 6.25 6.25
T=1000 4.90 4.90 4.90 4.90 4.90 4.90 4.90 4.45 4.45 4.45 4.45 4.45 4.45 4.45

W ivx
T (λ̂) α1 = α2, c = 10 α1 6= α2, c = 10

T=200 5.75 5.90 5.70 5.50 5.55 5.45 5.70 5.30 5.45 5.40 5.25 5.50 5.15 5.25
T=400 5.60 5.60 5.90 5.65 5.75 5.70 5.65 4.90 4.80 5.00 4.85 4.65 4.75 4.70
T=1000 5.15 5.40 5.35 5.50 5.30 5.35 5.10 4.20 4.45 4.45 4.40 4.35 4.65 4.60

W ivxc
T (λ̂) α1 = α2, c = 10 α1 6= α2, c = 10

T=200 5.75 5.85 5.65 5.50 5.55 5.45 5.60 5.30 5.45 5.40 5.25 5.40 5.15 5.25
T=400 5.60 5.60 5.90 5.65 5.70 5.60 5.60 4.90 4.80 5.00 4.85 4.65 4.75 4.70
T=1000 5.15 5.40 5.35 5.50 5.30 5.35 5.10 4.20 4.45 4.45 4.40 4.35 4.65 4.60

W ols
T (λ̂) α1 = α2, c = 10 α1 6= α2, c = 10

T=200 5.10 5.10 5.10 5.10 5.10 5.10 5.10 4.85 4.85 4.85 4.85 4.85 4.85 4.85
T=400 5.55 5.55 5.55 5.55 5.55 5.55 5.55 4.40 4.40 4.40 4.40 4.40 4.40 4.40
T=1000 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.10 5.10 5.10 5.10 5.10 5.10 5.10

Table 3 presents size estimates under a nonzero but weak correlation between ut and vt. W ivx
T (λ̂)
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continues to offer excellent size control across all scenarios on the intercepts and non-centrality parameter

and perhaps more importantly magnitudes of δ. Under α1 = α2, c = 1 for instance the average empirical

size across the seven different magnitudes of δ ranging between 0.70 and 0.94 was 4.64%. Given the weak

degree of endogeneity considered here we also note very similar outcomes characterising the OLS based

Wald statistic W ols
T (λ̂).

With σuv = −0.6 Table 4 focuses on a scenario with a stronger correlation between ut and vt. We can

immediately note the important distortions characterising the OLS based Wald statistic W ols
T (λ̂) which

is clearly not suitable under endogeneity as also suggested by our theoretical result in Proposition 2.

Here W ivx
T (λ̂) is seen to offer considerable improvements over W ols

T (λ̂). The match of empirical sizes to

their nominal counterparts is good to excellent for moderate magnitudes of δ and although finite sample

distortions start kicking in as δ approaches 1, overall the distortions appear acceptable especially for

larger sample sizes. Also noteworthy is the excellent match of empirical sizes of W ivx
T (λ̂) based inferences

to their nominal counterparts for slightly larger magnitudes of the non centrality parameter c. Finally

and equally importantly the corrected version of our Wald statistic W ivxc
T (λ̂) is seen to be characterised

by excellent size properties across all magnitudes of δ including when the latter are very close to 1. Under

δ = 0.94 and T = 400 for instance we note an empirical size of 4.90% for a 5% nominal size.

Table 3: Empirical Size of W ivx
T (λ̂), W ivxc

T (λ̂) and W ols
T (λ̂) (5% Nominal), σuv = −0.3

δ δ
0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.70 0.74 0.78 0.82 0.86 0.90 0.94

W ivx
T (λ̂) α1 = α2, c = 1 α1 6= α2, c = 1

T=200 4.25 4.75 4.85 4.95 5.30 5.15 5.25 5.00 5.55 5.90 6.20 6.30 6.05 6.15
T=400 3.95 4.05 4.50 4.60 4.85 5.20 5.35 5.60 5.80 6.05 6.50 6.75 7.25 7.15
T=1000 5.80 6.20 5.85 6.10 6.15 6.50 6.45 6.30 6.35 6.65 6.35 6.30 6.40 6.50

W ivxc
T (λ̂) α1 = α2, c = 1 α1 6= α2, c = 1

T=200 4.15 4.45 4.50 4.80 4.70 4.60 4.65 4.75 5.25 5.30 5.55 5.25 5.30 5.00
T=400 3.85 3.70 4.05 4.20 4.45 4.70 4.90 5.40 5.20 5.50 5.75 5.90 6.00 5.95
T=1000 5.70 6.00 5.70 5.70 5.75 6.05 5.90 6.10 6.15 6.25 5.60 5.45 5.45 5.70

W ols
T (λ̂) α1 = α2, c = 1 α1 6= α2, c = 1

T=200 5.80 5.80 5.80 5.80 5.80 5.80 5.80 6.60 6.60 6.60 6.60 6.60 6.60 6.60
T=400 6.20 6.20 6.20 6.20 6.20 6.20 6.20 6.15 6.15 6.15 6.15 6.15 6.15 6.15
T=1000 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.65 6.65 6.65 6.65 6.65 6.65 6.65

W ivx
T (λ̂) α1 = α2, c = 10 α1 6= α2, c = 10

T=200 6.10 5.95 5.85 6.10 6.15 6.15 6.15 5.40 5.20 5.25 5.40 5.60 5.55 5.65
T=400 5.25 5.20 5.30 5.10 5.15 5.20 5.35 5.00 5.30 5.35 5.70 5.60 5.75 5.70
T=1000 4.95 5.45 5.30 5.40 5.45 5.35 5.60 5.40 5.40 5.40 5.75 5.55 5.50 5.65

W ivxc
T (λ̂) α1 = α2, c = 10 α1 6= α2, c = 10

T=200 5.95 5.80 5.80 6.05 6.05 5.95 6.00 5.40 5.10 5.20 5.40 5.60 5.55 5.55
T=400 5.20 5.15 5.25 5.10 5.10 5.15 5.20 5.00 5.30 5.35 5.60 5.55 5.75 5.45
T=1000 4.95 5.30 5.25 5.35 5.40 5.30 5.45 5.40 5.30 5.40 5.70 5.50 5.40 5.65

W ols
T (λ̂) α1 = α2, c = 10 α1 6= α2, c = 10

T=200 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.60 5.60 5.60 5.60 5.60 5.60 5.60
T=400 5.25 5.25 5.25 5.25 5.25 5.25 5.25 4.90 4.90 4.90 4.90 4.90 4.90 4.90
T=1000 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.35 5.35 5.35 5.35 5.35 5.35 5.35
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Table 4: Empirical Size of W ivx
T (λ̂), W ivxc

T (λ̂) and W ols
T (λ̂) (5% Nominal), σuv = −0.6

δ δ
0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.70 0.74 0.78 0.82 0.86 0.90 0.94

W ivx
T (λ̂) α1 = α2, c = 1 α1 6= α2, c = 1

T=200 5.95 6.15 6.55 6.80 7.70 8.35 8.65 6.75 7.25 7.70 8.05 8.40 8.80 9.15
T=400 5.75 6.25 6.45 6.80 6.90 7.15 7.55 6.00 6.45 6.75 6.95 7.30 7.20 7.15
T=1000 5.60 6.05 6.30 6.05 6.65 6.90 7.15 4.80 4.95 5.45 5.70 5.40 5.95 6.65

W ivxc
T (λ̂) α1 = α2, c = 1 α1 6= α2, c = 1

T=200 5.05 5.25 5.25 5.30 5.50 5.65 5.90 5.60 5.90 5.85 5.65 5.65 5.10 5.25
T=400 5.20 5.20 5.05 5.15 5.05 4.80 4.90 5.20 5.25 5.40 5.25 5.20 4.95 4.80
T=1000 4.95 5.00 4.95 4.75 4.75 4.45 4.60 4.05 4.05 4.10 4.00 3.80 3.90 4.20

W ols
T (λ̂) α1 = α2, c = 1 α1 6= α2, c = 1

T=200 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.35 10.35 10.35 10.35 10.35 10.35 10.35
T=400 10.75 10.75 10.75 10.75 10.75 10.75 10.75 9.85 9.85 9.85 9.85 9.85 9.85 9.85
T=1000 9.80 9.80 9.80 9.80 9.80 9.80 9.80 10.05 10.05 10.05 10.05 10.05 10.05 10.05

W ivx
T (λ̂) α1 = α2, c = 10 α1 6= α2, c = 10

T=200 4.85 4.80 5.10 5.00 5.15 5.15 5.00 5.55 5.65 5.80 5.80 5.95 6.15 6.30
T=400 6.00 5.75 5.40 5.60 5.75 6.00 5.95 4.55 4.95 5.20 5.40 5.65 6.00 6.10
T=1000 5.20 5.60 5.50 5.30 5.20 5.30 5.10 4.85 5.20 5.15 5.00 5.00 4.95 5.30

W ivxc
T (λ̂) α1 = α2, c = 10 α1 6= α2, c = 10

T=200 4.45 4.55 4.75 4.85 4.85 4.70 4.55 5.50 5.50 5.55 5.40 5.65 5.75 5.95
T=400 5.85 5.55 5.30 5.30 5.35 5.45 5.35 4.30 4.85 5.00 5.25 5.40 5.70 5.65
T=1000 5.15 5.50 5.35 5.15 4.90 4.95 4.70 4.70 5.05 5.05 4.75 4.75 4.65 4.70

W ols
T (λ̂) α1 = α2, c = 10 α1 6= α2, c = 10

T=200 5.10 5.10 5.10 5.10 5.10 5.10 5.10 6.50 6.50 6.50 6.50 6.50 6.50 6.50
T=400 6.30 6.30 6.30 6.30 6.30 6.30 6.30 5.90 5.90 5.90 5.90 5.90 5.90 5.90
T=1000 5.20 5.20 5.20 5.20 5.20 5.20 5.20 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Next, Table 5 treats the important case of σuv = −0.9 which brings the DGP closer to the type of

endogeneity we encounter when dealing with financial returns and valuation ratios. Our results highlight

the remarkable robustness and usefulness ofW ivxc
T (λ̂) under more extreme endogeneity scenarios combined

with choices of δ in the vicinity of unity. This modified IVX based Wald statistic is seen to offer excellent

size properties with empirical sizes in the region of 4.5%-5.1% for a 5% nominal size. Also noteworthy is

the robustness of this feature to alternative magnitudes of c and to whether the intercepts are allowed to

shift or not.

Regarding the uncorrected IVX based Wald statisticW ivx
T (λ̂), although its size properties are adequate

for magnitudes of δ around 0.70 it is clear that it will lead to too many spurious rejections of the null unless

impractically large sample sizes become available. As discussed earlier and in analogy with KMS2015

the root cause of this phenomenon originates in the estimation of intercepts in the fitted specification.

Important finite sample distortions appear to affect the term H ′λQλ(Q′λQλ)−1Q′λu in H∗′λ u
∗ despite the

fact that it vanishes asymptotically and is dominated by H ′λu.
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Table 5: Empirical Size of W ivx
T (λ̂), W ivxc

T (λ̂) and W ols
T (λ̂) (5% Nominal), σuv = −0.9

δ δ
0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.70 0.74 0.78 0.82 0.86 0.90 0.94

W ivx
T (λ̂) α1 = α2, c = 1 α1 6= α2, c = 1

T=200 7.85 8.45 9.10 9.75 10.60 11.00 11.60 7.85 8.45 9.25 9.55 10.15 10.60 11.30
T=400 7.85 8.25 9.15 9.90 10.40 11.15 11.95 6.95 7.35 7.60 7.85 9.30 10.35 10.65
T=1000 6.65 7.20 8.00 8.25 9.40 10.65 11.20 7.15 8.05 8.40 9.05 10.00 11.20 12.00

W ivxc
T (λ̂) α1 = α2, c = 1 α1 6= α2, c = 1

T=200 5.30 5.10 5.20 4.95 4.65 4.55 4.25 5.05 4.75 4.75 4.35 4.35 4.15 4.25
T=400 5.60 5.40 5.25 5.00 4.55 4.50 4.40 5.15 5.25 4.90 4.60 4.70 4.60 4.55
T=1000 5.10 4.90 4.75 4.80 4.40 4.50 4.30 5.20 5.25 5.05 4.80 4.45 4.40 4.20

W ols
T (λ̂) α1 = α2, c = 1 α1 6= α2, c = 1

T=200 15.05 15.05 15.05 15.05 15.05 15.05 15.05 15.15 15.15 15.15 15.15 15.15 15.15 15.15
T=400 14.55 14.55 14.55 14.55 14.55 14.55 14.55 14.85 14.85 14.85 14.85 14.85 14.85 14.85
T=1000 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.50 15.50 15.50 15.50 15.50 15.50 15.50

W ivx
T (λ̂) α1 = α2, c = 10 α1 6= α2, c = 10

T=200 6.05 5.95 5.85 5.90 6.15 6.45 6.75 5.25 5.50 5.50 5.70 5.80 5.75 6.05
T=400 5.75 5.85 6.05 6.00 6.15 6.20 6.20 6.05 5.80 5.95 6.25 6.40 6.45 6.40
T=1000 6.20 6.35 6.65 6.50 6.65 6.95 6.85 5.70 5.95 6.05 6.10 6.50 6.75 6.80

W ivxc
T (λ̂) α1 = α2, c = 10 α1 6= α2, c = 10

T=200 5.40 5.20 5.10 5.15 5.05 5.10 5.35 4.85 4.85 4.85 4.95 4.95 4.80 5.00
T=400 5.55 5.40 5.30 5.10 4.95 4.85 4.85 5.45 5.55 5.45 5.45 5.35 5.30 5.10
T=1000 6.00 6.05 6.05 5.95 5.85 5.75 5.70 5.50 5.70 5.50 5.75 5.85 6.05 5.90

W ols
T (λ̂) α1 = α2, c = 10 α1 6= α2, c = 10

T=200 7.25 7.25 7.25 7.25 7.25 7.25 7.25 6.40 6.40 6.40 6.40 6.40 6.40 6.40
T=400 6.85 6.85 6.85 6.85 6.85 6.85 6.85 7.55 7.55 7.55 7.55 7.55 7.55 7.55
T=1000 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.45 7.45 7.45 7.45 7.45 7.45 7.45

In summary our size experiments have demonstrated the suitability and usefulness of an IVX type of

approach for conducting inferences about episodic predictability in small to moderate samples. Our IVX

based Wald statistic W ivx
T (λ̂) provides excellent size control under weak to moderate correlations between

ut and vt regardless of the magnitude of δ including values in the vicinity of 1. For strong to extreme

degrees of correlations between ut and vt however the same statistic can lead to serious size distortions

for magnitudes of δ in excess of 0.70 and its corrected version W ivxc
T (λ̂) should be preferred given the

excellent size control of the latter for any magnitude of the pair {σuv, δ}.

We next focus on the ability of W ivxc
T (λ̂) to detect fixed departures from the null hypothesis across a

broad range of scenarios and parameterisations. Results are presented in Table 6 below. More importantly

we here address the issue of the impact of δ on finite sample size power trade-offs more thoroughly

by considering fine increments of δ ranging between 0.40 and 0.94 under both the null and various

alternatives, with the outcomes compiled within Figures 1-2 below.

Focusing on the results presented in Table 6 first we note a clear progression of empirical power

towards 100% as the sample size increases, with W ivxc
T (λ̂) achieving power close to 100% under T=1000

and across all intercept, noncentrality parameter scenarios and any magnitude of δ. Concentrating on

the case σuv = −0.9 we can also observe that empirical power is steadily increasing with δ with a spread

in empirical power of about 10% between δ = 0.70 and δ = 0.82 albeit with a clear stabilisation for

magnitudes of δ in the vicinity of the 0.85-0.95 range. Under {α1 = α2, c = 1, T = 200} for instance an

empirical power of 83.8% when δ = 0.82 can be compared with 86.4% when δ = 0.90 and 86.6% when

δ = 0.94, a pattern that carries through across most parameterisations.
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Table 6: Empirical Power of W ivxc
T (λ̂) (5% Nominal Size)

δ δ
β1 = 0 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.70 0.74 0.78 0.82 0.86 0.90 0.94

β2 = 0.025 α1 = α2, c = 1, σuv = −0.6 α1 6= α2, c = 1, σuv = −0.6
T=200 24.3 26.9 29.5 31.6 33.5 34.6 35.3 31.4 34.6 37.1 39.5 41.4 42.9 43.7
T=400 66.2 70.7 75.4 78.7 81.6 83.2 84.9 72.2 77.5 81.0 83.6 85.7 87.3 88.6
T=1000 96.5 97.5 98.3 99.2 99.6 100.0 100.0 96.8 97.5 98.4 99.0 99.5 99.8 99.9
β2 = 0.05
T=200 66.7 69.6 73.4 76.7 79.7 80.7 82.0 72.8 76.6 79.4 81.1 83.3 84.4 85.5
T=400 95.9 97.1 98.0 98.8 99.3 99.5 99.7 95.5 96.5 97.7 98.6 99.3 99.5 99.7
T=1000 98.9 99.2 99.5 99.7 100.0 100.0 100.0 98.7 99.3 99.7 100.0 100.0 100.0 100.0

β2 = 0.025 α1 = α2, c = 10, σuv = −0.6 α1 6= α2, c = 10, σuv = −0.6
T=200 11.6 11.9 12.1 12.6 13.3 14.0 14.1 15.8 16.5 17.1 17.9 18.3 19.1 19.4
T=400 33.3 35.6 38.2 40.5 41.9 43.3 44.2 49.4 52.6 55.3 57.4 59.2 60.8 61.8
T=1000 98.3 98.9 99.1 99.5 99.7 99.7 99.7 99.8 99.8 99.9 99.9 100.0 100.0 100.0
β2 = 0.05
T=200 32.6 34.8 36.4 38.1 39.5 41.0 41.6 51.6 53.9 55.9 57.2 58.4 59.8 60.4
T=400 89.1 90.9 92.5 94.1 94.5 94.8 95.0 96.8 97.5 98.2 98.5 98.7 98.8 98.8
T=1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

β2 = 0.025 α1 = α2, c = 1, σuv = −0.9 α1 6= α2, c = 1, σuv = −0.9
T=200 24.3 26.7 28.9 30.2 31.3 32.2 32.6 32.7 36.1 38.2 40.0 41.5 43.2 43.8
T=400 72.0 77.3 80.9 83.8 85.9 87.2 88.0 80.1 84.0 86.9 89.2 90.7 92.3 92.7
T=1000 97.5 97.8 98.7 99.2 99.6 99.8 99.9 97.6 98.5 99.2 99.5 99.8 99.9 100.0
β2 = 0.05
T=200 73.0 78.0 81.2 83.8 85.0 86.4 86.6 78.4 82.8 85.2 87.3 88.9 89.6 89.8
T=400 96.9 97.6 98.4 98.8 99.2 99.5 99.7 96.3 97.7 98.2 98.9 99.1 99.4 99.6
T=1000 99.2 99.5 99.7 99.8 99.9 100.0 100.0 98.8 99.1 99.5 99.8 100.0 100.0 100.0

β2 = 0.025 α1 = α2, c = 10, σuv = −0.9 α1 6= α2, c = 10, σuv = −0.9
T=200 12.2 13.0 13.8 14.4 14.6 15.1 15.7 15.9 16.9 17.5 18.1 18.7 18.9 18.8
T=400 36.1 38.6 40.7 42.9 44.8 46.2 47.5 52.1 56.5 59.2 61.9 63.8 65.8 67.3
T=1000 99.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
β2 = 0.05
T=200 35.7 38.7 40.5 41.8 43.1 44.4 45.5 51.7 54.6 57.3 60.0 61.8 62.9 63.9
T=400 94.3 95.7 96.6 97.4 98.0 98.3 98.4 99.2 99.5 99.7 99.7 99.9 99.9 100.0
T=1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

The analysis presented in Figures 1-2 below is also highly informative when it comes to assessing the

influence of δ and for providing practical guidelines on its choice. We note that the W ivxc
T (λ̂) statistic

displays excellent size control as judged by the horizontal line across 5% while its power is seen to

increase with δ, typically stabilising for magnitudes in the vicinity of or greater than 0.85. This suggests

that selecting a δ that is close to 0.9 should provide reliable finite sample inferences with only marginal

differences if it is slightly above or below 0.9. This is also supported by our application below where our

test statistics are seen to have very similar pvalues for any magnitude of δ between 0.80 and 0.95.
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Figure 1: Size and Power of W ivxc
T (λ̂) across δ (5% Nominal Size)
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Figure 2: Size and Power of W ivxc
T (λ̂) across δ (5% Nominal Size)
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5 Valuation Ratio Based Return Predictability

Due to its ability to let the data determine the presence or absence of regime specific behaviour in

predictive regressions, our threshold setting is particularly suited for exploring the presence of time
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varying return predictability when time variation is driven by economic episodes such as recessions and

expansions rather than calendar time per se. The new inference theory developed in this paper is an

important complement to the two test statistics proposed in Gonzalo and Pitarakis (2012) allowing us

to distinguish between regime specific predictability truly induced by a particular predictor such as the

dividend yield and regime specific behaviour that may arise solely due to the variable used for generating

the regimes (e.g. average returns varying across business cycle regimes).

Despite a large literature geared towards testing for the linear predictability of stock returns with

valuation ratios such as the dividend yield it is only recently that empirical work has recognised the

possibility that predictability may be kicking in occasionally depending on the state of the economy.

In Gonzalo and Pitarakis (2012) for instance, using aggregate US data over the 1950-2007 period we

established a strong countercyclical property to dividend yield based predictability of stock returns with

an R2 as high as 17% in the weak or negative growth regime, dropping to 0% during expansions (see

also Henkel, Martin and Nardari (2011) who reached similar conclusions using a different statistical

framework). More recently Gargano (2013) also reached similar conclusions using the dividend to Price

ratio as a predictor while also proposing a theoretical framework that embeds this recessionary period

based predictability of stock returns within a consumption based asset pricing model. Earlier research that

highlighted the importance of a changing environment on predictability include Pesaran and Timmermann

(1995), Paye and Timmermann (2006) amongst numerous others.

We here consider the question of episodic predictability of aggregate US market returns using four

fundamental valuation ratios given by the dividend yield (DY), the book-to-market ratio (BM), the

dividend to Price ratio (DP) and the earnings yield (EP). Although they serve a different purpose we also

contrast inferences based on our W ivxc
T (λ̂) statistic developed here with inferences based on the SupBivx

statistic developed in Gonzalo and Pitarakis (2012) and which was designed to test H0 : α1 = α2, β1 =

β2 = 0. As the latter null hypothesis could be rejected due to unequal intercepts we are here able to infer

whether episodic predictability is directly induced by the valuation ratios under consideration.

The potential influence of economic conditions on predictability is captured by the threshold variable

qt for which we consider three alternative choices proxying business cycle conditions. In addition to

the monthly growth rate in Industrial Production (IPGR) we considered in Gonzalo and Pitarakis (2012)

(data item INDPRO retrieved from the Fred database) we also implement our analysis using a selection of

composite indicators of real economic activity commonly tracked by policy makers. Namely the 3 month

moving average of the Chicago Fed’s National Activity index (CFNAIMA, 1967:05-2013:12) and the

Aruoba-Diebold-Scotti business conditions index (ADS, 1960:04-2013:12) with the shortcoming that these

two series are available from the 60s onwards whereas IPGR can cover the full sample period for which

returns and valuation ratios are available. As the ADS index (see Aruoba, Diebold and Scotti (2009)) is

designed to track the economy in real time it is constructed as a daily index which we transformed into

a monthly series by selecting its end of the month values. Given our operating assumptions we verified

the stationarity properties of the above three threshold variables through a standard ADF test which led

to strong rejections of the unit root null for all cases.

Compared to our analysis in Gonzalo and Pitarakis (2012) where we had focused solely on DY over
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1950-2007 we also extend our sample to cover the 1927-2013 period using the recently extended Goyal and

Welch data set (see Goyal and Welch (2014) and Welch and Goyal (2008)). The specific return series we

are considering is the recently revised excess returns series referred to as Mkt−RF in Kenneth French’s

data library with Mkt referring to the value weighted returns of all CRSP firms listed on the NYSE,

AMEX or NASDAQ and RF the one month T-Bill return.

Table 7 below presents our empirical results across various values of δ for the W ivxc
T (λ̂) and SupBivx

statistics. Note that in analogy to the correction we applied to our IVX based Wald statistic we also

implemented the same correction to the SupBivx statistic of Gonzalo and Pitarakis (2012) and referred

to as SupBivxc hereafter (see Remark A1 in the appendix). Although not reported here inferences based

on SupBivx led to outcomes identical to those based on SupBivxc across all magnitudes of δ. Outcomes

of the SupA statistic designed to test the null of linearity H0 : α1 = α2, β1 = β2 rather than predictability

per se are also included for reference. The underlying theory for this test was developed in Gonzalo and

Pitarakis (2012).

Table 7: Episodic Predictability of Stock Returns with Valuation Ratios

W ivxc
T (λ̂) SupBivxc SupA

δ 0.70 0.78 0.86 0.94 0.70 0.78 0.86 0.94

IPGR (1927-2013)
DY 6.69 [0.04] 6.51 [0.04] 5.59 [0.06] 4.61 [0.10] 33.26*** 33.66*** 33.28*** 32.64*** 27.54 [0.00]
BM 6.20 [0.05] 6.27 [0.04] 6.23 [0.04] 6.24 [0.04] 41.17*** 41.7*** 41.83*** 41.81*** 34.72 [0.00]
DP 4.53 [0.10] 4.68 [0.10] 4.13 [0.13] 3.42 [0.18] 22.32*** 22.93*** 22.9*** 22.57*** 19.19 [0.00]
EP 3.86 [0.15] 4.55 [0.10] 4.88 [0.09] 4.90 [0.09] 15.92*** 16.61*** 16.99*** 17.13*** 12.22 [0.05]

IPGR (1940-2013)
DY 4.32 [0.12] 5.61 [0.06] 6.02 [0.05] 5.80 [0.06] 24.11*** 24.93*** 25.03*** 24.69*** 20.02 [0.00]
BM 0.94 [0.63] 1.48 [0.48] 1.89 [0.39] 2.09 [0.35] 12.59 * 13.02 * 13.27 * 13.36 * 11.46 [0.07]
DP 3.00 [0.22] 4.20 [0.12] 4.66 [0.10] 4.55 [0.10] 22.29*** 23.09*** 23.25*** 23.01*** 19.37 [0.00]
EP 1.56 [0.46] 2.39 [0.30] 3.05 [0.22] 3.44 [0.18] 4.13 5.02 5.69 6.05 2.51 [0.98]

IPGR (1950-2013)
DY 2.41 [0.30] 2.76 [0.25] 2.63 [0.27] 2.17 [0.34] 23.52*** 24.01*** 24.09*** 23.83*** 21.53 [0.00]
BM 2.24 [0.33] 1.62 [0.44] 1.34 [0.51] 1.22 [0.54] 12.25 ** 12.39 ** 12.56 ** 12.66 ** 12.10 [0.05]
DP 1.63 [0.44] 2.05 [0.36] 2.03 [0.36] 1.70 [0.43] 21.54 ** 22.04*** 22.19*** 22.04*** 20.23 [0.00]
EP 0.67 [0.72] 0.84 [0.66] 1.29 [0.53] 1.61 [0.45] 3.53 3.81 4.30 4.75 3.39 [0.89]

IPGR (1960-2013)
DY 3.11 [0.21] 3.48 [0.18] 3.91 [0.14] 4.28 [0.12] 21.72*** 21.62*** 21.50*** 21.43*** 19.60 [0.00]
BM 0.37 [0.83] 0.10 [0.95] 0.21 [0.90] 0.44 [0.80] 10.92 10.92 10.93 10.94 10.88 [0.08]
DP 1.74 [0.42] 2.08 [0.35] 2.48 [0.29] 2.80 [0.25] 19.56*** 19.64*** 19.61*** 19.56*** 18.23 [0.00]
EP 3.22 [0.20] 1.92 [0.38] 1.31 [0.52] 1.12 [0.57] 3.18 3.20 3.27 3.36 2.65 [0.97]

ADS (1960-2013)
DY 4.68 [0.10] 4.98 [0.08] 5.26 [0.07] 5.45 [0.07] 17.19*** 17.17*** 17.05*** 16.91*** 14.99 [0.01]
BM 0.48 [0.79] 0.60 [0.74] 0.94 [0.63] 1.28 [0.53] 11.03 11.04 11.05 11.07 10.98 [0.08]
DP 2.96 [0.23] 3.27 [0.20] 3.60 [0.17] 3.84 [0.15] 14.73 ** 14.85 ** 14.82 ** 14.74 ** 13.38 [0.03]
EP 1.20 [0.55] 1.02 [0.60] 1.06 [0.59] 1.19 [0.55] 7.97 ** 7.99 ** 8.06 ** 8.15 ** 7.44 [0.30]

CFNAIMA3 (1967-2013)
DY 7.72 [0.02] 6.87 [0.03] 6.16 [0.05] 5.67 [0.06] 14.52 ** 14.50 ** 14.45 ** 14.42 ** 13.12 [0.03]
BM 5.74 [0.06] 5.08 [0.08] 4.47 [0.11] 4.06 [0.13] 12.51 * 12.51 * 12.52 * 12.52 * 12.50 [0.04]
DP 6.90 [0.03] 6.16 [0.05] 5.54 [0.06] 5.11 [0.08] 12.82 * 12.90 * 12.88 * 12.85 * 11.87 [0.06]
EP 4.62 [0.10] 4.54 [0.10] 4.30 [0.12] 4.09 [0.13] 9.52 9.51 9.56 9.63 9.07 [0.17]

Focusing first on the DY series with threshold effects driven by the full history of the growth rate

in industrial production (IPGR 1927-2013) we note that on the basis of the W ivxc
T (λ̂) statistic and all

magnitudes of δ the null of no episodic predictability induced by DY is rejected with a pvalue of 0.06 under

δ = 0.86 and a pvalue of 0.10 under δ = 0.94. This further corroborates and strengthens our findings

in Gonzalo and Pitarakis (2012) where we had documented the countercyclical predictability of DY over

the 1950-2007 period on the basis of the SupBivx statistic. Our new test statistic leads to rejections of

the null hypothesis H0 : β1 = β2 = 0 as does SupBivxc which tests H0 : α1 = α2, β1 = β2 = 0, suggesting
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that predictability over the full sample is truly driven by the DY predictor rather than unequal intercepts

arising from our business cycle proxy.

Looking at the IPGR based subperiods we note that SupBivxc based inferences continue to consistently

reject across all scenarios while W ivxc
T (λ̂) based inferences attribute a more ambiguous role to the dividend

yield as predictor when restricting the sample to the post 50s period. This suggests that over this

particular subperiod, SupA and SupBivxc may in fact be rejecting their respective null hypotheses H0 :

α1 = α2, β1 = β2 and H0 : α1 = α2, β1 = β2 = 0 mainly due to unequal intercepts i.e. the regime specific

nature of return predictability may in fact be driven by our business cycle proxy rather than the DY

predictor playing a distinct role across expansions versus recessions. This is in line with a recent branch

of the predictability literature which argues that DY based predictability has declined due to greater

dividend smoothing. Operating within a purely linear setting, KMS2015 documented a very weak return

predictability using the dividend yield over the full sample and no evidence of predictability in the post

50s period. In our current context it is also important to point out that as we switch from the post 50s to

the post 60s sample the W ivxc
T (λ̂) appears to revert and corroborate more strongly the earlier inferences

based on the full IPGR sample.

Our use of alternative drivers of episodic predictability beyond IPGR is here helpful for exploring

further the post-war period and assessing the robustness of our IPGR based results. Using both the

ADS and CFNAIMA series as threshold variables we note strong rejections of the null hypothesis on the

basis of our W ivxc
T (λ̂) statistic across all magnitudes of δ. Combined with our clear-cut results based on

IPGR (1927-2013) we view our results as providing strong empirical evidence in support of countercyclical

predictability of stock returns using DY. This finding also highlights the crucial importance that needs to

be given to the time varying nature of predictability when evaluating the predictive power of any variable

for future stock returns. It is also interesting to point out that our use of CFNAIMA3 as a threshold

variable led to an estimate of the threshold parameter given by γ̂ = −0.662 which corresponds very

precisely to the Chicago Fed guidelines of interpreting a CFNAIMA3 below -0.7 as signalling an increased

likelihood that a recession has begun. Similarly, we obtained γ̂ = −0.012 for the cutoff associated

with IPGR (1927-2013) effectively splitting the sample into periods of positive and negative Industrial

Production growth. The ADS index led to γ̂ = −0.99, a negative magnitude also interpreted as signalling

deteriorating economic conditions.

Our BM based inferences lead to more ambiguous outcomes and display greater sensitivity to both

the choice of the threshold variable and periods of analysis. It is clear however that with the exception of

the full historical sample period under IPGR there is very little support for any robust predictive power.

An outcome that is also consistent with what has been documented in the linear predictive regression

literature.

For the DP series and regardless of the sample period considered we note a consistent and strong

rejection of the null hypotheses on the basis of the SupBivxc statistic, indicating strong regime specific

effects in the behaviour of stock returns. However in this instance and unlike the DY series our W ivxc
T (λ̂)

test statistic mostly fails to reject the null hypothesis H0 : β1 = β2 = 0. This suggests that the SupBivxc

based rejections were most likely driven by unequal intercepts and highlights the importance of our
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new inferences. Finally, regarding the predictive power of the earnings yield (EP) our results point to

very little evidence of regime specific predictability. With the exception of the full sample period under

IPGR, inferences based on both W ivxc
T (λ̂) and SupBivxc are typically unable to reject their respective

null hypotheses at reasonable significance levels.

6 Conclusions

We developed a toolkit for assessing the predictability induced by a single persistent predictor in an

environment that allows predictability to kick in during particular economic episodes and affect all or

only some parameters of the model. Our threshold based framework and testing methodology can be

used to explore the possibility that the predictive power of highly persistent predictors such as interest

rates, valuation ratios and numerous other economic and financial variables may be varying across time

in an economically meaningful way with alternating periods of strong versus weak or no predictability.

More importantly the core contribution of this paper was to provide a setting that allows us to distinguish

predictability induced by a specific predictor from predictability that may be solely driven by economic

episodes (e.g. stock returns differing across recessions and expansions). Our empirical results have

highlighted the misleading or at best incomplete conclusions one may reach if such regime specific effects

are ignored when assessing predictability.

Although our operating assumptions were closely aligned to the those commonly considered in the

linear predictive regression literature and allowed for a rich interaction between the random disturbances

driving our predictive threshold specification it is important to recognise the limitations of our condi-

tional homoskedasticity restriction imposed on ut. In the context of our application, a standard LM

test for ARCH effects (up to order 12) in the residuals of our predictive threshold specifications under

CFNAIMA3 and ADS did not reject the null hypothesis of no such effects at reasonable significance levels

and similarly for IPGR within the post 50s sample but strong ARCH effects were supported by the data

when considering the full sample period under IPGR (i.e. IPGR (1927-2013)).

In KMS2015 (Theorem 1) the authors showed that allowing for GARCH(p,q) errors within their linear

predictive regression setting had no influence on the asymptotics of their IVX based Wald statistic. The

key driver of this important and unusual result was the near integratedness of the predictor with the

robustness to GARCH of the Wald statistic shown to fail under purely stationary predictors. Allowing

for GARCH type effects in our setting can be particularly challenging when it comes to establishing

the limiting properties of objects such as
∑
utI(qt−d ≤ γ) and

∑
utxt−1I(qt−d ≤ γ) under very general

dependence structures linking u′ts and q′ts while also allowing for ARCH type dependence in the u′ts but

it is an obvious extension we will consider in follow up work. Our on-line appendix provides a broad

range of size simulations under GARCH effects and suggests very little impact on inferences based on

W ivxc
T (λ̂), supporting the conjecture that KMS2015s result may also hold within our setting.
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APPENDIX

PROOF OF PROPOSITION 1: Since under H0 : β1 = β2 = 0 the threshold model is given by yt = α1I1t−1 + α2I2t−1 + ut,

all assumptions of Gonzalo and Pitarakis (2002) are satisfied implying the statement in (i). The result in Part (ii) follows

by first noting that the minimiser of ST (λ) is numerically identical to the maximiser of the Wald statistic WT (λ) for testing

H0 : α1 = α2 in the above restricted specification. This Wald statistic is given by

WT (λ) =

(∑
utI1t−1∑
I1t−1

−
∑
utI2t−1∑
I2t−1

)2 ∑
I1t−1

∑
I2t−1

T σ̂2
u(λ)

(15)

with σ̂2
u(λ) denoting the residual variance obtained from the above mean shift specification. Under H0 : α1 = α2 and A1-A3

a suitable Law of Large Numbers (see White (2000, p.58)) ensures that σ̂2
u(λ)

p→ σ2
u. From Caner and Hansen (2001) we

have
∑T
t=1 utI1t−1/

√
T ⇒ Bu(λ). The strict stationarity and ergodicity of the I ′its further ensures that

∑
I1t−1/T

p→ λ and∑
I2t−1/T

p→ (1− λ). It now follows from the Continuous Mapping Theorem that

WT (λ) ⇒ [Bu(λ)− λBu(1)]2

σ2
uλ(1− λ)

. (16)

The desired result then follows from the continuity of the argmax functional and the fact that the limit process has a unique

maximum in Λ with probability 1 (see Theorem 2.7 in Kim and Pollard (1990)). �

Before proceeding with the limiting properties of W ols
T (λ̂) we briefly set out the notation associated with each of its compo-

nents under our DGP in (1) also applying suitable normalisations. Defining

git(λ) ≡
∑
Iit−1

T

∑
ytxt−1Iit−1

T
−
∑
ytIit−1√
T

∑
xtIit−1

T
√
T

∆it(λ) ≡
∑
x2
t−1Iit−1

T 2

∑
Iit−1

T
−
(∑

xt−1Iit−1

T
√
T

)2

(17)

for i = 1, 2, standard algebra leads to

X∗′λ y
∗

T
=


g1t(λ)∑
I1t−1/T

g2t(λ)∑
I2t−1/T

 (18)

and

(
X∗′λ X

∗
λ

T 2

)−1

=


∑
I1t−1/T

∆1t(λ)
0

0

∑
I2t−1/T

∆2t(λ)

 . (19)

Given our null hypothesis of interest it is also useful to specialise (18) across the two scenarios on the intercepts, namely

yt = α + ut when α1 = α2 and yt = α1I
0
1t−1 + α2I

0
2t−1 + ut when α1 6= α2. In this latter case I0

it−1 refers to the indicator

function evaluated at the true threshold parameter λ0. We write

[
X∗′λ y

∗

T

]
α1=α2

=


g1t(λ)|α1=α2∑

I1t−1/T

g2t(λ)|α1=α2∑
I2t−1/T

 (20)

and

[
X∗′λ y

∗

T

]
α1 6=α2

=


g1t(λ)|α1 6=α2∑

I1t−1/T

g2t(λ)|α1 6=α2∑
I2t−1/T

 (21)

with
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git(λ)|α1=α2 =

∑
Iit−1

T

∑
utxt−1Iit−1

T
−
∑
utIit−1√
T

∑
xt−1Iit−1

T
√
T

(22)

git(λ)|α1 6=α2 =

∑
Iit−1

T

(
α1

∑
xt−1Iit−1I

0
1t−1

T
+ α2

∑
xt−1Iit−1I

0
2t−1

T
+

∑
utxt−1Iit−1

T

)
−

∑
xt−1Iit−1

T

(
α1

∑
Iit−1I

0
1t−1

T
+ α2

∑
Iit−1I

0
2t−1

T
+

∑
utIit−1

T

)
(23)

Before proceeding with the proof of Proposition 2 we introduce the following auxiliary Lemma that is used for establishing

the asymptotic properties of the sample moments in (23).

LEMMA A1. Under Assumptions A1-A3, T |λ̂− λ0| = Op(1) and letting Ut ≡ F (qt), as T →∞ we have

1√
T

∑
I(Ut−1 ≤ λ̂)I(Ut−1 ≤ λ0)− 1√

T

∑
I(Ut−1 ≤ λ0)

p→ 0 (24)

PROOF of LEMMA A1: We need to establish that for every ε > 0 and δ > 0

lim
T→∞

P

[∣∣∣∣∣ 1√
T

T∑
t=1

[
I
(
qt < λ̂

)
− I (qt < λ)

]
I (qt < λ)

∣∣∣∣∣ > ε

]
< δ.

Given that ∣∣∣∣∣ 1√
T

T∑
t=1

[
I
(
qt < λ̂

)
− I (qt < λ)

]
I (qt < λ)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1√
T

T∑
t=1

[
I
(
λ−

∣∣∣λ̂− λ∣∣∣ < qt < λ+
∣∣∣λ̂− λ∣∣∣)]∣∣∣∣∣

≤ 1√
T

T∑
t=1

At
(
λ, λ̂− λ

)
with At (λ, d) = I (λ− |d| < qt < λ+ |d|) , it will be enough to prove that

lim
T→∞

P

[
1√
T

T∑
t=1

At
(
λ, λ̂− λ

)
> ε

]
< δ

for every ε > 0 y δ > 0. Since λ̂ is such that T |λ̂− λ0| = Op(1), therefore for every δ > 0, ∃∆δ <∞ and an integer Tδ ≥ 1

such that

P

[∣∣∣λ̂− λ∣∣∣ > ∆δ

T

]
< δ for ∀T > Tδ,

and also

P

[
1√
T

T∑
t=1

At
(
λ, λ̂− λ

)
> ε

]
= P

[{
1√
T

T∑
t=1

At
(
λ, λ̂− λ

)
> ε

}
∩
{∣∣∣λ̂− λ∣∣∣ ≤ ∆δ

T

}]
+

+ P

[{
1√
T

T∑
t=1

At
(
λ, λ̂− λ

)
> ε

}
∩
{∣∣∣λ̂− λ∣∣∣ > ∆δ

T

}]

≤ P

[
1√
T

T∑
t=1

At

(
λ,

∆δ

T

)
> ε

]
+ P

[∣∣∣λ̂− λ∣∣∣ > ∆δ

T

]
.

Using Markov’s inequality

P

[
1√
T

T∑
t=1

At

(
λ,

∆δ

T

)
> ε

]
≤

∥∥∥ 1√
T

∑T
t=1 At

(
λ, ∆δ

T

)∥∥∥
1

ε
≤

1√
T

∑T
t=1

∥∥∥At (λ, ∆δ
T

)∥∥∥
1

ε

and under our assumption on the boundedness of the pdf of qt away from 0 and ∞ over each bounded set∥∥∥∥At(λ, ∆δ

T

)∥∥∥∥
1

=

∥∥∥∥I (λ− ∆δ

T
< qt < λ+

∆δ

T

)∥∥∥∥
1

≤M ∆δ

T
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therefore

P

[
1√
T

T∑
t=1

At

(
λ,

∆δ

T

)
> ε

]
≤

1√
T

∑T
t=1

∥∥∥At (λ, ∆δ
T

)∥∥∥
1

ε

≤
√
TM ∆δ

T

ε
≤ M∆δ

ε
√
T
.

Putting together these results we have that for every ε > 0 and δ > 0 ∃Tεδ <∞ such that for every T > Tεδ

P

[∣∣∣λ̂− λ∣∣∣ > ∆δ

T

]
< δ

P

[
1√
T

T∑
t=1

At

(
λ,

∆δ

T

)
> ε

]
< δ

and then

lim
T→∞

P

[
1√
T

T∑
t=1

At
(
λ, λ̂− λ

)
> ε

]
≤ lim
T→∞

P

[
1√
T

T∑
t=1

At

(
λ,

∆δ

T

)
> ε

]
+ lim
T→∞

P

[∣∣∣λ̂− λ∣∣∣ > ∆δ

T

]
< 2δ.

leading to the desired result. �

PROOF OF PROPOSITION 2. We initially consider the case α1 6= α2. Given the T-consistency of λ̂ for λ0, T |λ̂ − λ0| =

Op(1), and our result in Lemma A1 we have

git(λ̂)|α1 6=α2 =

∑
I0
it−1

T

∑
xt−1utI

0
it−1

T
−
∑
utI

0
it−1√
T

∑
xt−1I

0
it−1

T
√
T

+ op(1), (25)

∆it(λ̂) =

∑
I0
it−1

T

∑
x2
t−1I

0
it−1

T 2
−
(∑

xt−1I
0
it−1

T
√
T

)2

+ op(1). (26)

Using Lemma 1 in Gonzalo and Pitarakis (2012), Theorem 1 in Caner and Hansen (2001) together with the continuous

mapping theorem we have

g1t(λ̂)|α1 6=α2 ⇒ λ0

(∫
Jc(r)dBu(r, λ0)−Bu(λ0)

∫
Jc(r)

)
,

g2t(λ̂)|α1 6=α2 ⇒ (1− λ0)

(∫
Jc(r)(dBu(r)− dBu(r, λ0))− (Bu(1)−Bu(λ0))

∫
Jc(r)

)
,

∆1t(λ̂) ⇒ λ2
0

∫
J∗c (r)2,

∆2t(λ̂) ⇒ (1− λ0)2

∫
J∗c (r)2. (27)

Next, using (27) in (20)-(21) and rearranging gives

X∗′
λ̂
X∗
λ̂

T 2
⇒

∫
J∗c (r)2

(
λ0 0
0 (1− λ0)

)
(28)

and

X∗′
λ̂
y∗

T
⇒


∫
Jc(r)dBu(r, λ0)−Bu(λ0)

∫
Jc(r)

∫
Jc(r)(dBu(r)− dBu(r, λ0))− (Bu(1)−Bu(λ0))

∫
Jc(r)

 . (29)

Combining (28)-(29) into (7) and using σ̂2(λ̂)
p→ σ2

u leads to

W ols
T (λ̂) ⇒

[
∫
JcdBu(r, λ0)−Bu(λ0)

∫
Jc(r)]

2

σ2
uλ0

∫
J∗c (r)2

+

[
∫
Jc(dBu(r)− dBu(r, λ0))− (Bu(1)−Bu(λ0))

∫
Jc(r)]

2

σ2
u(1− λ0)

∫
J∗c (r)2

≡
[
∫
J∗c (r)dGu(r, λ0)]2

σ2
uλ0(1− λ0)

∫
J∗c (r)2

+
[
∫
J∗c (r)dBu(r)]2

σ2
u

∫
J∗c (r)2

≡ [Bu(λ0)− λ0Bu(1)]2

σ2
uλ0(1− λ0)

+
[
∫
J∗c (r)dBu(r)]2

σ2
u

∫
J∗c (r)2

(30)
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with Gu(r, λ0) = Bu(r, λ0) − λ0Bu(r, 1) denoting a Kiefer Process with covariance function σ2
u(r1 ∧ r2)λ0(1 − λ0). The

result in Proposition 2 then follows by noting that Jc(r) and Gu(r, λ0) are uncorrelated and hence independent due to

their Gaussianity so that
∫
J∗c (r)dGu(r, λ) ≡ N(0, σ2

uλ0(1 − λ0)
∫
J∗c (r)2) conditionally on the realisation of Jc(r). Thus

normalising by σ2
uλ0(1− λ0)

∫
J∗c (r)2 gives the χ2(1) limit which is also the unconditional distribution since not dependent

on the realisation of Jc(r). The case α1 = α2 can be treated in a similar fashion with λ0 replaced by the random variable

λ∗ in (30) as in Theorem 5 of Caner and Hansen (2001) with the nuance that our random maximiser λ∗ does not depend on

any nuisance parameters. The main result for this case then follows by noting that the first component in the right hand

side of (30) evaluated at λ∗ is a χ2(1) random variable. This latter point is a consequence of the independence of λ∗ and

[
∫
J∗c (r)dG̃u(r, λ)]2/

∫
J∗c (r)2 or equivalently of

∫
dG̃u(r, λ) (which λ∗ is the maximiser of) and [

∫
J∗c (r)dG̃u(r, λ)]2/

∫
J∗c (r)2

where we let G̃u(r, λ) ≡ Gu(r, λ)/
√
λ(1− λ). Indeed, letting B̃Bu(λ) ≡ [Bu(λ) − λBu(1)]2/λ(1 − λ) then given that

P [B̃Bu(λ∗) ≤ x|λ∗ = λ] = CHISQ(x) for any given λ, independence here implies that the unconditional distribution of

B̃Bu(λ∗) must also be χ2(1). To note the independence of
∫
dG̃u(r, λ) ≡ ζ say, and [

∫
J∗c (r)dG̃u(r, λ)]/

√∫
J∗c (r)2 ≡ M

which is N(0, 1) as shown above, it is useful to point out that M is of the form µ′ζ/
√
µ′µ and the two quantities have

joint characteristic function ψ(ζ,M) = E[eitζ+isM ] = E[E[eitζ+isM |µ]]. It is now straightforward to note that ψ(ζ,M) =

E[eitζ ]E[eisM ] as G̃u(r, λ) is independent of Bv(r) and hence of J∗c (r) (see Gonzalo and Pitarakis (2012, p. 232) and Gonzalo

and Pitarakis (2012, Supplementary Appendix Section 2.2).

PROOF OF PROPOSITION 3. The result follows directly from the independence of Bu(r, λ) and Bv(r) under σuv = 0 also

implying the independence of J∗c (r) and Bu(r, λ) and from which mixed normality follows. Noting also the independence of

the two components in the right hand side of (30) established in Gonzalo and Pitarakis (2012). �

Before proceeding with the proof of Proposition 4 it will be convenient to reformulate the components of (11) in an explicit

and suitably normalised form. Defining

mit(λ) ≡
∑
Iit−1

T

[(∑
Iit−1

T

∑
h̃2
t−1Iit−1

T 1+δ

)
− 1

T 1−δ

(∑
h̃t−1Iit−1

T
1
2

+δ

)2
]

πit(λ) ≡
(∑

Iit−1

T

∑
h̃t−1xt−1Iit−1

T 1+δ
−
∑
h̃t−1Iit−1

T
1
2

+δ

∑
xt−1Iit−1

T
√
T

)2

nit(λ) ≡
∑
Iit−1

T

∑
yth̃t−1Iit−1

T
1
2

+ δ
2

− 1

T
1
2
− δ

2

(∑
h̃t−1Iit−1

T
1
2

+δ

∑
ytIit−1√
T

)
(31)

for i = 1, 2 we can write

1

T 1+δ
H∗′λ X

∗
λ(H∗′λ H

∗
λ)−1H∗′λ X

∗
λ =


π1t(λ)

m1t(λ)
0

0
π2t(λ)

m2t(λ)

 (32)

and

T
1+δ
2 β̂ivx(λ) =


n1t(λ)√
π1t(λ)

n2t(λ)√
π2t(λ)

 (33)

PROOF OF PROPOSITION 4. We concentrate on the case α1 6= α2 with the underlying T-consistency of λ̂ for λ0. We

also recall that h̃t =
∑t
j=1 φ

t−j
T ∆xj and let ht =

∑t
j=1 φ

t−j
T vj . It now follows directly from (31) and Lemma 3.1 in Phillips

and Magdalinos (2009) that

mit(λ̂) =

(∑
I0
it−1

T

)2 ∑
h2
t−1I

0
it−1

T 1+δ
+ op(1)

πit(λ̂) =

(∑
ht−1I

0
it−1

T
1
2

+δ

∑
xt−1I

0
it−1

T
√
T

−
∑
I0
it−1

T

∑
ht−1xt−1I

0
it−1

T 1+δ

)2

+ op(1). (34)

Under our assumptions A1-A3 the following deduce directly from Phillips and Magdalinos (2009, eq. (14))

m1t(λ̂) ⇒ λ3
0
ω2
v

2

m2t(λ̂) ⇒ (1− λ0)3 ω2
v

2
(35)

22



since
∑
h2
t−1(I0

1t−1 − λ0)/T 1+δ p→ 0. It also follows that

π1t(λ̂) ⇒ λ4
0

[
ω2
v +

∫
J∗c (r)dJc(r)

]2

π2t(λ̂) ⇒ (1− λ0)4

[
ω2
v +

∫
J∗c (r)dJc(r)

]2

(36)

so that

1

T 1+δ
H∗′λ̂ X

∗
λ̂(H∗′λ̂ H

∗
λ̂)−1H∗′λ̂ X

∗
λ̂ ⇒

[ω2
v +

∫
J∗c (r)dJc(r)]

2

ω2
v/2

(
λ0 0
0 1− λ0

)
(37)

Next, we also have

nit(λ̂) =

∑
I0
it−1

T

∑
utht−1I

0
it−1

T
1
2

+ δ
2

+ op(1) (38)

and Lemma 3.2 in Phillips and Magdalinos (2009) together with (35) ensure the following holds

1

T
1
2

+ δ
2

∑
ht−1utI

0
1t−1 ⇒ N(0, λ0σ

2
u
ω2
v

2
)

1

T
1
2

+ δ
2

∑
ht−1utI

0
2t−1 ⇒ N(0, (1− λ0)σ2

u
ω2
v

2
) (39)

which when rearranged with (37) and using the continuous mapping theorem within W ivx
T (λ̂) leads to the desired result. The

case α1 = α2 can be treated in a similar fashion with λ0 replaced by the random variable λ∗ as formulated in Proposition

1. �

REMARK A1. The SupBivx statistic developed in Gonzalo and Pitarakis (2012) was formulated as SupBivx ≡ supλW
A
T (λ)+

W ivx
T (β = 0) with WA

T (λ) referring to the Wald statistic for testing H0 : α1 = α2, β1 = β2 in (1) and W ivx
T (β = 0) was the

simple IVX based Wald statistic for testing H0 : β = 0 in yt = α + βxt−1 + ut i.e. exactly analogous to the Wald statistic

developed in KMS2015. The finite sample corrected version of SupBivx considered in our application above simply replaces

W ivx
T (β = 0) with its formulation in KMS2015 (pp. 1514-1515, equations (19)-(21)).

23



REFERENCES

Ang, A. and G. Bekaert (2008), “Stock Return Predictability: Is it There?”, Review of Financial

Studies, 20,651-707.

Aruoba, S.B., Diebold, F.X. and Scotti, C. (2009), “Real-Time Measurement of Business Conditions,”

Journal of Business and Economic Statistics, 27, 417-27.

Bandi, F. and B. Perron (2008), “Long Run Risk Return Trade-Offs,” Journal of Econometrics, 143,

349-374.

Breitung, J. and M. Demetrescu (2014), “Instrumental Variable and Variable Addition Based Inference

in Predictive Regressions,” Journal of Econometrics, forthcoming.

Campbell, J. Y., and Yogo, M. (2006), “Efficient tests of stock return predictability,” Journal of

Financial Economics, 81, 27-60.

Caner, M., and Hansen, B. E. (2001), “Threshold Autoregression with a Unit Root,” Econometrica,

69, 1555-1596.

Gargano, A., (2013), “Return Predictability in Recessions: An Asset Pricing Perspective,” Unpub-

lished Manuscript.

Gonzalo, J., and Pitarakis, J. (2002), “Estimation and Model Selection Based Inference in Single and

Multiple Threshold Models,” Journal of Econometrics, 110, 319-352.

Gonzalo, J., and Pitarakis, J. (2012), “Regime Specific Predictability in Predictive Regressions,”

Journal of Business and Economic Statistics, 30, 229-241.

Goyal, A., and Welch, I. (2014), “Update to A Comprehensive Look at the Empirical Performance of

Equity Premium Prediction,” Unpublished Manuscript.

Hansen, B. E. (2000), “Sample splitting and threshold estimation,” Econometrica, 68, 575-603.

Henkel, S. J., Martin, J. S., and Nardari, F. (2011), “Time-Varying Short-Horizon Predictability,”

Journal of Financial Economics, 99, 560-580.

Jansson, M., and Moreira, M. J. (2006), “Optimal Inference in Regression Models with Nearly Inte-

grated Regressors,” Econometrica, 74, 681-714.

Kim, J., and Pollard,D. (1990), “Cube Root Asymptotics,” Annals of Statistics, 18, 191-219.

Kostakis, A., Magdalinos, A., and Stamatogiannis, M. (2015), “Robust Econometric Inference for

Stock Return Predictability,” Review of Financial Studies, 28, 1506-1553.

Lewellen, J. (2004), “Predicting returns with financial rations,” Journal of Financial Economics, 74,

209-235.

Paye, B. S. and Timmermann, A. (2006), “Instability of Return Prediction Models,” Journal of

Empirical Finance, 13, 274-315.

24



Pesaran, M. H., and Timmermann, A. (1995), “Predictability of Stock Returns: Robustness and

Economic Significance,” Journal of Finance, 50, 1201-2228.

Phillips, P. C. B. (1988), “Regression Theory for Near-Integrated Time Series,” Econometrica, 56,

1021-1043.

Phillips, P. C. B., and Magdalinos, A. (2009), “Econometric Inference in the Vicinity of Unity,”

Singapore Management University, CoFie Working Paper No. 7.

Pitarakis, J. (2008), “Threshold Autoregressions with a unit root: Comment,” Econometrica, 76,

1207-1217.

Rossi, B., (2005), “Optimal Tests for Nested Model Selection with Underlying Parameter Stability,”

Econometric Theory, 21, 962-990.

Rossi, B., (2007), “Expectations Hypotheses Tests at Long Horizons,” Econometrics Journal, 10, 1-26.

Valkanov, R. (2003), “Long-horizon regressions: theoretical results and applications,” Journal of

Financial Economics, 68, 201-232.

Wei, M., and Wright, J. (2013), “Reverse Regressions and Long Horizon Forecasting,” Journal of

Applied Econometrics, 28, 353-371.

Welch, I., and Goyal, A. (2008), “A Comprehensive Look at the Empirical Performance of Equity

Premium Prediction,” Review of Financial Studies, 21, 1455-1508.

White, H. (2000), Asymptotic Theory for Econometricians. Second Revised Edition. Academic Press.

25


