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Abstract

This paper studies the long-term asset allocation problem of an investor with different risk
aversion attitudes to the short and the long term. We characterize investor’s preferences with
a utility function exhibiting a regime shift in risk aversion at some point of the multiperiod
investment horizon that is estimated using threshold nonlinearity methods. Our empirical
results for a portfolio of cash, bonds and stocks suggest that long-term risk aversion is higher
than short-term risk aversion and increases with the investment horizon. The exposure of
the investment portfolio from stocks to bonds and cash increases with the degree of risk
aversion.

I. Introduction

The optimal portfolio decisions of long-term investors depend on the economic and finan-
cial environment, in particular, the universe of financial assets available to the investor, their
expected returns and risks, and the preferences and circumstances of investors. In a long-
term optimal portfolio context, these preferences are usually modelled as the discounted
sum of a stream of period utility functions characterized by a risk aversion coefficient. In
this sense, the degree of investor’s risk aversion plays a fundamental role in determining
optimal investment strategies.

This approach entertains the same parameter for describing the investor’s risk aversion
over different investment horizons. This assumption can be appropriate for myopic asset
allocation problems involving one-period-ahead investment decisions, however, for invest-
ment decisions involving more than one period the assumption can be too simplistic and
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overlook the possibility of changes in individual’s risk aversion between the short and the
long term. Thus, for long-term asset allocation problems, it may be more appropriate to
consider different types of period utility functions reflecting different risk perceptions with
respect to the investment horizon1. The main aim of this paper is to do this in an optimal
asset allocation framework. More specifically, we assess the implications from an optimal
portfolio theory perspective of extending the standard multiperiod optimal asset allocation
problem to a setting characterized by two different types of utility function reflecting each
a different risk aversion attitude to the short and the long term. For simplicity, we entertain
the family of power utility functions characterized by two different relative risk aversion
coefficients describing investors’ preferences to the short and the long term, respectively.

Unfortunately, intertemporal asset allocation models are hard to solve in closed form
unless strong assumptions on the investor’s objective function such as log preferences or a
lognormal distribution for asset returns are imposed. This situation has begun to change as
a result of several developments in numerical methods and continuous time finance models
such as Barberis (2000) and Brennan, Schwartz and Lagnado (1997, 1999). Approximate
analytical solutions to the Merton (1973) model have been developed in Campbell and
Viceira (1999, 2001, 2002) and Campbell, Chan and Viceira (2003) for models exhibiting
an intertemporal elasticity of substitution close to one. Recent parametric alternatives to
solving the investor optimal portfolio problem over several periods have been proposed
by Aït-Sahalia and Brandt (2001) and Brandt and Santa Clara (2006). We follow a similar
methodology and develop a suitable framework in which to derive the optimal portfolio
decision of investors over multiperiod investment horizons.

The distinctive and innovative feature of our framework is that investors’ preferences
are modelled by a power utility function that takes two different relative risk aversion
coefficients depending on how close the investment horizon is to the present. To the best
of our knowledge, this is the first paper to differentiate between short and long-term risk
aversion and analyze the consequences from a long-term optimal portfolio perspective. For
the sake of generality, we also entertain the possibility of dynamics in the risk aversion
coefficients. The presence of dynamics in the investor’s relative risk aversion coefficient is
not new in the financial literature. Brandt and Wang (2003), for example, obtain dynamics
in the relative risk aversion coefficient as a consequence of entertaining utility functions that
incorporate habit formation. In contrast to these authors, we propose a structural model to
describe the dynamics of relative risk aversion. In our model the coefficients characterizing
risk aversion to the short and long term are assumed to be parametric functions of a set
of state variables used to describe the information set. By doing so, we contemplate the
possibility of changes in investor’s risk aversion not only driven by the structure of the
investment horizon but also by time-varying economic conditions.

In the proposed model the optimal portfolio weights characterizing the optimal asset
allocation are determined by a parametric linear portfolio policy rule driven by the dynamics
of the set of state variables reflecting the information set. Under this assumption, we obtain
a set of Euler equations that can be estimated and tested using the generalized method
of moments (GMM). The system of Euler equations is overidentified, allowing us to test

1
For example, it is not difficult to construct a narrative causality theory of how unexpected electoral or referendum

results can provoke different short/long-term attitudes towards risk.
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different features of the model such as the role of the state variables in driving the optimal
allocation to stocks and bonds or the presence of dynamics and nonlinearities in risk
aversion. Thus, the second main contribution of the paper is to propose a likelihood ratio
test to formalize the existence of a regime shift in investors’ risk aversion between the short
and the long term. The econometric methodology to implement the test is similar in spirit
to Andrews (1993), Andrews and Ploberger (1994) and Hansen (1996) that discuss how
to make inference when a nuisance parameter is not identified under the null hypothesis
(Davies (1977, 1987) problem). In our setting, we assume the period separating the short
term from the long term to be unknown but estimated from the data. Under the null
hypothesis, there is a single risk aversion regime implying that the period signalling the
structural break (nuisance parameter) in the risk aversion coefficient is not identified. In
this scenario, standard statistical inference procedures cannot be applied to statistically
assess the presence of a threshold nonlinearity. Instead, we apply a P-value transformation
implemented through a multiplier method to the multiperiod Euler equations defining the
optimality conditions of the individual’s maximization problem, see Hansen (1996) for
early applications of the methodology.

We apply this methodology to analyze the optimal portfolio choice of a long-term
investor that can invest in three assets – a one-month Treasury bill as riskless security, a
long-term bond, and an equity portfolio. This empirical application closely follows similar
studies such as Brennan et al. (1997), Brandt (1999) and Campbell et al. (2003). Our choice
of state variables to proxy the dynamics of the investment opportunity set is motivated by the
literature on predictive regressions for financial returns. It is defined by the detrended short-
term interest rate, the U.S. credit spread, the S&P 500 trend and the one-month average of
excess stock and bond returns. Our empirical findings suggest that investors exhibit two
different types of risk aversion and that the threshold separating the short from the long
term is around the seventh month of the investment horizon. These findings also reveal
that long-term risk aversion is higher than short-term risk aversion and increases with the
number of periods defining the individual’s investment horizon. The analysis of the optimal
portfolio weights also suggests that the exposure of the investment portfolio to cash and
bonds compared to stocks increases with the degree of risk aversion (flight to quality). This
phenomenon is more pronounced for very high levels of risk aversion in which investors’
optimal asset allocation moves away from stocks and bonds to cash (flight to safety).

The rest of the article is structured as follows. Section 2 presents the model and derives
the system of Euler equations obtained from the first-order conditions of the multiperiod
maximization problem of an individual exhibiting different risk aversion to the short and
the long term. Section 3 discusses the implementation of GMM to estimate the optimal
portfolio weights and the risk aversion coefficients and briefly discusses the corresponding
asymptotic theory. Section 4 presents two types of econometric tests to assess the parametric
assumptions used in the development of our model. First, we introduce in detail a threshold
nonlinearity test to assess statistically the presence of two regimes in the individual’s
risk aversion function, and second, we discuss several specification tests to assess the
suitability of the parametric policy rules proposed in the paper. Section 5 presents an
empirical application to compare the optimal allocation to a portfolio of stocks, bonds and
cash between investors with different attitudes towards risk with respect to the investment
horizon. Section 6 concludes.
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II. The model

The investor’s multiperiod objective function

We introduce first the following utility function that characterizes the preferences of indi-
viduals with different attitudes towards risk aversion in the short and the long term:

�0∑
j=0

�jEt

[
W 1−�

t+j

1− �

]
+

K∑
j=�0+1

�jEt

[
W 1−�*

t+j

1− �*

]
, (1)

where Et[·] denotes the conditional expectation with respect to the sigma-algebra gener-
ated by all the information available to the individual at time t; Wt denotes real wealth, the
discount factor � measures patience, the willingness to give up wealth today for wealth
tomorrow, and the coefficients � and �* capture risk aversion to the short and long term,
respectively. The parameter �0 denotes the period separating the short from the long term
and is defined over K investment horizons. This function extends naturally standard for-
mulations proposed in the literature to model the preferences of long-term investors. In
this literature, investors have time-invariant period utility functions characterized by power
utility functions with the same coefficient � across investment horizons.

The above objective function can be extended to also accommodate dynamics in the
coefficients � and �*. By doing so, we entertain the possibility of individuals exhibiting a
time-varying relative risk aversion on wealth. Brandt and Wang (2003) achieve a similar
objective by introducing the presence of habit formation in the individual’s utility function.
In our setting, we introduce a risk aversion function �t(j;�0) that, in order to guarantee the
positiveness of the relative risk aversion coefficient, is defined as

�t(j;�0)= exp
(
(�′ +�′1(j >�0))Zt+j

)
, (2)

where Zt+j = (1, Z1, t+j,…, Zn−1, t+j)′ denotes a vector of n−1 macroeconomic and financial
variables reflecting all the information available to the investor at time t + j; � and � are the
corresponding vectors of model parameters. This piecewise linear formulation follows the
spirit of Gonzalo and Pitarakis (2012, 2017) on threshold predictive regression and Perron
(1989, 1997) and Andrews (1993) on structural breaks. More compactly, the multiperiod
utility function becomes

K∑
j=0

�jEt

[
W 1−�t (j;�0)

t+j

1− �t(j;�0)

]
. (3)

The individual begins life with an exogenous endowment of wealth Wt = 1. This en-
dowment accumulates over time according to the equation

Wt+1 = (1+ rp
t+1)Wt. (4)

At the beginning of period t +1 the individual receives income from allocating resources
in an investment portfolio offering a real return rp

t+1. The portfolio return is defined as

rp
t+1(�t)= rf ,t+1 +�′

tr
e
t+1, (5)

with re
t+1 = (r1,t+1 − rf ,t+1,…, rm,t+1 − rf ,t+1)′ denoting the vector of excess returns on the m

risky assets over the real risk-free rate rf ,t+1, and �t = (�1,t ,…,�m,t)′ denoting the different
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allocations to risky assets. In order to be able to solve a multiperiod maximization problem
that accommodates in a parsimonious way arbitrarily long investment horizons, we entertain
the parametric portfolio policy rule introduced in Aı̈t-Sahalia and Brandt (2001) and used
extensively in Brandt and Santa Clara (2006) and Brandt, Santa Clara and Valkanov (2009).
More specifically,

�t+j =�Zt+j, (6)

with � a m × n matrix of model parameters associated to the state variables Zt . Time
variation of the optimal asset allocation is introduced through the dynamics of the state
variables. This specification of the portfolio weights has two main features. First, it allows
us to study the marginal effects of the state variables on the optimal portfolio weights
through the set of parameters �, and second, it avoids the introduction of time consuming
stochastic dynamic programming methods.2

Optimal portfolio choice under risk aversion

In this section, we derive the first-order conditions of the long-term optimal portfolio choice
problem for a risk-averse individual with preferences described above.The investor’s wealth
process at time t + j can be expressed in terms of the compound j−period gross return and
the initial wealth Wt that we consider to be equal to one. More formally,

Wt+j =
j

�
i=1

(1+ rp
t+i(�Zt+i−1)). (7)

Using this characterization of the wealth process simple algebra shows that the individual’s
maximization problem can be written as

max
{�}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑K

j=0
Et

⎡⎢⎢⎢⎣�j

(
j

�
i=1

(1+ rp
t+i(�Zt+i−1))

)1−�t (j;�0)

1− �t(j;�0)

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (8)

The first-order conditions of this optimization problem with respect to the parameter �
provide the following system of mn Euler equations:

Et

[
K∑

j=1

�j�h,s
t,j (Z ;�0,�0)

]
=0 (9)

with �0 = (�0, �0,�0) and

�h,s
t,j (Z ;�0,�0)=

(
j∑

i=1

Zs,t+i−1re
h,t+i

1+ rp
t+i(�0Zt+i−1)

)(
j

�
i=1

(1+ rp
t+i(�0Zt+i−1))

)1−�0t (j;�0)

, (10)

2
This approach forces the individual’s optimal portfolio policy rule to be linear and with the same parameter

values over the long-term horizon. More sophisticated models can be developed that entertain different parametric
portfolio policy rules for different investment horizons j = 1,…, K , however, this approach significantly increases
the computational complexity of the methodology and is beyond the aim of this study.
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for h = 1,…, m and s = 1,…, n; �0t(j;�0) = exp((�′
0 + �′

01(j > �0))Zt+j). The matrix �0 is
the solution to the first-order conditions of the maximization problem for a given set of
parameters �0 and �0.

The set of conditional moments (9) is equivalent to the following set of conditions

E

[
K∑

j=1

�j�h,s
t,j (Z ;�0,�0)Ut

]
=0,

for all It−measurable functions Ut and for all t, 1� t �T −K , with T > K the sample size.
Following Giacomini and Komunjer (2005), we assume the existence of a n×1 vector of
variables U *

t that are observed at time t and that contain all of the relevant information in
the sigma-algebra �t . We refer to U *

t as the information vector. The general requirement on
{U *

t } is that it is a strictly stationary and mixing series. In our framework, we consider U *
t

to be the vector of state variables Zt . Under these assumptions, the set of mn conditional
moment conditions (9) becomes a set of mn2 unconditional moment conditions given by

E

[
K∑

j=1

�j�h,s
t,j (Z ;�0,�0)Zs̃,t

]
=0, (11)

indexed by h = 1,…, m and s, s̃ = 1,…, n. Let git(�0,�0) =∑K
j=1 �j�h,s

t,j (Z ;�0,�0)Zs̃,t with
i =1,…, mn2 an index that accounts for all possible combinations of h=1,…, m and s, s̃=
1,…, n on the right hand side of the expression; and let gt(�0,�0) be the mn2 vector that
stacks all these variables. Condition (11) becomes

E [gt(�0,�0)]=0. (12)

The main advantage of this approach is that the system of mn first-order conditions
derived from the maximization problem (8) yields an overidentified system of mn2 uncon-
ditional moment conditions. This property is exploited in the econometric section to derive
suitable estimators of the optimal portfolio weights and risk aversion coefficients at the
same time as carrying out statistical tests for the parametric specifications (2) and (6).

III. Econometric methods: estimation

This section presents suitable methods to estimate the optimal portfolio weights and the
parameters driving the dynamics of the risk aversion coefficient. Let gN (�0,�0) be the
vector that stacks the sample moment conditions 1

N

∑N
t=1 git(�0,�0) with N = T − K and

i = 1,…, mn2. The idea behind GMM is to choose an estimate of �0, namely �̂N , so as to
make the sample moments gN (�̂N ,�0) as close to zero as possible.

Let GN (�,�0) = gN (�,�0)′V̂
−1

N gN (�,�0) with V̂ N a consistent estimator of the long-run
covariance matrix of

√
NgN (�0,�0), defined as

V0(�0,�0)= 1

N

N∑
t=1

N∑
s=1

E[gt(�0,�0)gs(�0,�0)′]. (13)
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This matrix captures the strong serial correlation in the sequence gt(�0,�0) due to enter-
taining a multiperiod investment horizon in the individual’s objective function. An esti-
mator of V0 can be obtained by applying HAC variance estimators. More specifically, let

�N (j)= 1
N

N∑
t=j+1

gt(�̂N ,�0)gt−j(�̂N ,�0)′ be the sample covariance matrix between gt and gt−j

constructed with the estimator �̂N . A suitable Newey–West HAC estimator is

V̂ N (�̂N ,�0)=�N (0)+
l∑

j=1

l − j

j

(
�N (j)+�N (j)′), (14)

with l a bandwidth parameter that determines the maximum order of autocorrelation taken
into account by the estimator. Using this notation, we obtain an estimator of �0 as the
solution to the minimization problem

min
�∈�

GN (�,�0), (15)

with � the parameter space for �. In a first stage, to obtain a consistent estimator of �0,
namely �̃N , we use the identity matrix as an initial candidate for V̂ N . In a second stage, the
minimization process is repeated replacing the identity matrix by the matrix V̂ N (�̃N ,�0).
This minimization process is iterated until a satisfactory solution is obtained with �̂N

denoting the estimator of the model parameters obtained in the last step.
In the general case given by absence of knowledge of the true population parameter �0,

we propose a two-step estimation procedure for estimating the model parameters.3 For each
�∈ [Kmin, Kmax] with 1 < Kmin < Kmax < K , we define the set of parameter estimators �̂N (�) as

�̂N (�)= arg min
�∈�

GN (�,�). (16)

The second step of the estimation process consists of finding the strategic horizon of the
investors’multiperiod objective function that minimizes GN (�̂N (�),�) on �. More formally,

�̂N = arg min
�∈[Kmin,Kmax]

GN (�̂N (�),�). (17)

The resulting estimator is the vector (�̂N (�̂N ), �̂N ) that will be denoted as (�̂N , �̂N ) hereafter.
Applying standard results already derived in Chan (1993), Andrews (1993) and Hansen

(2000) for least squares methods and in Seo and Shin (2016) for GMM, we state without
formal proof that

�̂N
p→�0. (18)

We are also interested in making inference on the model parameters �0 = (�0, �0,�0). Abus-
ing of notation, we interpret the quantities �0 and �̂N as vectors of dimension (mn+2n)×1.
A direct application of the asymptotic theory developed in Hansen (1996, 2000), Gonzalo

3
A similar two-step procedure for estimation of the model parameters using GMM methods is proposed by Seo

and Shin (2016). These authors derive the asymptotic distribution of the model parameters including the threshold.
In contrast to the conventional theory for threshold estimators derived from least squares, see, for example, the
literature initiated by Chan (1993) and Hansen (1996), the threshold parameter estimator proposed by these authors
is asymptotically normal irrespective of whether the regression function is continuous.
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and Pitarakis (2002) and Gonzalo and Wolf (2005) for least squares procedures, and more
specifically, theorem 1 in Seo and Shin (2016) for GMM estimation, shows that

√
N
(
�̂N (�̂N )−�0

)
d→N

(
0,
(
D(�0)′V −1

0 (�0,�0)D(�0)
)−1
)

(19)

with D(�0)≡E[ @gt (�, �0)
@�

] a mn2 × (mn+2n) matrix as N →∞.

IV. Econometric methods: hypothesis testing

This section presents a threshold nonlinearity test to statistically assess the presence of two
regimes in risk aversion. Our parametric test also accommodates the presence of dynamics
in both short and long-term risk aversion functions. We also exploit the overidentified
system of equations (12) to propose a specification test for the parametric formulation of
the risk aversion function (2) and the policy rule (6).

Threshold nonlinearity tests

Following the literature on threshold and structural break models, we will distinguish two
cases. One in which the timing of the break �0 is known, and a second case, in which
�0 is not identified under the null hypothesis. The quantity of interest is the risk aversion
function (2) that is reproduced here for the sake of clarity in the exposition:

�t(j;�0)= exp((�′ +�′1(j >�0))Zt+j) with j =1,…, K .

A simplified version of this function that does not entertain dynamics in risk aversion is
�(j;�0) = exp(�j + �j1(j > �0)), with �j = �c and �j = �c for j = 1,…, K . For the latter case,
the null hypothesis rejecting nonlinearity in risk aversion is formulated as

H0 :�c =0 against HA :�c 	=0.

In the extended version that incorporates linear dynamics in risk aversion the null hypothesis
is

H �
0 :�c =�1 =…=�n−1 =0 against H �

A :�s 	=0 for some s = c, 1,…, n−1.

These tests are standard for �0 known and appropriate test statistics can be deployed by
exploiting the overidentified system of equations (12). More specifically, a suitable non-
linearity test for the above null hypotheses is the likelihood ratio test

LK (�0)=N
(

GN (�̂0N ,�0)−GN (�̂N ,�0)
)
, (20)

with �̂0N denoting the model parameter estimates under the null hypothesis and �̂N the
corresponding model parameter estimates obtained from the unrestricted model. It is im-
portant to note that the covariance matrix used for computing both statistics GN (�̂0N ,�0) and
GN (�̂N ,�0) is obtained from the unrestricted model. Under these conditions, the asymptotic
distribution of the test statistic under the null hypothesis H �

0 satisfies

LK (�0)
d→	2

n, (21)

with n the number of parameters defining the nonlinear segment of (2).
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The most interesting case is to test for the presence of nonlinearities in the preferences
of long-term investors when �0 is not known. In this case �0 ∈ [Kmin, Kmax] is a nuisance
parameter that cannot be identified under the null hypotheses H0 and H �

0 of constant/linearity
of the risk aversion function, respectively. Hansen (1996) shows, in very general set-
tings, that the composite nonlinearity test is nonstandard. As proposed by this author,
see also Davies (1977, 1987) or Andrews and Ploberger (1994) in different contexts, hy-
pothesis tests for nonlinearity can be based on different functionals of the relevant test
statistic computed over the domain of the nuisance parameter. In our framework, the rele-
vant test statistic is lK = sup

�∈[Kmin,Kmax]
LK (�) with sup the supremum of the functional version

of (20).
To derive the asymptotic distribution of the relevant test, we define the processes

SN (�̂N ,�) = √
N gN (�̂N ,�) and its counterpart under the null hypothesis H �

0 defined as
S0N (�̂0N ,�) = √

N gN (�̂0N ,�). Both processes have the asymptotic covariance kernel
defined as

�0(�1,�2)= 1

N

N∑
t=1

N∑
s=1

E[gt(�0,�1)gs(�0,�2)′], (22)

with �∈ [Kmin, Kmax]. The empirical counterpart of (22) is

�̂N (�1,�2)= �̃N (0)+
l∑

j=1

l − j

j

(
�̃N (j)+ �̃N (j)′), (23)

with �̃N (j) = 1
N

∑N
t=j+1 gt(�̂N ,�1)gt−j(�̂N ,�2)′ the functional counterpart of �N (j) defined

above. The process LK (�) is defined as

LK (�)=S ′
0N (�̂0N ,�)�̂N (�,�)−1S0N (�̂0N ,�)−S ′

N (�̂N ,�)�̂N (�,�)−1SN (�̂N ,�). (24)

Under some suitable regularity conditions on the uniform convergence of �̂N (�1,�2) to
�0(�1,�2) over its compact support, see Hansen (1996) for more technical details, the pro-
cess SN (�̂N ,�) converges weakly to a multivariate zero mean Gaussian process, S(�0,�),
defined by the covariance function �0(�,�). Similarly, under the null hypothesis H �

0 , the
process S0N (�̂0N ,�) converges to a multivariate zero-mean Gaussian process S0(�0,�) with
covariance kernel �0(�,�). Under these conditions, the process LK (�) converges in distri-
bution to the following chi-square process

L0(�)=S ′
0(�0,�)�0(�,�)−1S0(�0,�)−S ′(�0,�)�0(�,�)−1S(�0,�), (25)

with n degrees of freedom and determined by the number of restrictions imposed by H �
0 .

The continuous mapping theorem implies that the statistic lK = sup
�∈[Kmin,Kmax]

LK (�) converges

in distribution to l0 = sup
�∈[Kmin,Kmax]

L0(�). Since the null distribution of (25) depends upon the

covariance function �0(�,�), critical values cannot be tabulated. To obtain the p−values of
the test, we derive a P-value transformation similar in spirit to the work of Hansen (1996)
based on a multiplier bootstrap.
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Let F0(·) denote the distribution function of l0, and define pN = 1 − F0(lK ). The above
result shows that pN converges in probability to p0 = 1 − F0(l0) that under the null hypo-
thesis is uniform on [0, 1]. Thus the asymptotic null distribution of pN is free of nuisance
parameters. The rejection rule of our test is given by pN < � with � the significance level
and pN the asymptotic P-value. The random variable l0 can be written as a continuous
functional of the Gaussian processes S(�0,�) and S0(�0,�) which are completely described
by the covariance function �0(�,�). To implement the P-value transformation, we operate
conditional on the sample Xt ={(r′

t+1, Z ′
t )

′}N
t=1. More specifically, we define the multivari-

ate mean-zero Gaussian processes ŜN (�̂N ,�) and Ŝ0N (�̂0N ,�) conditional on the sample
Xt . These processes are vectors of dimension mn2 that can be generated by simulating a
sequence of i.i.d. univariate N (0, 1) random variables {vt}N

t=1. More specifically, each
element of the multivariate process ŜN is defined as

Ŝ i,N (�̂N ,�)= 1√
N

N∑
t=1

git(�̂N ,�)vt. (26)

Similarly, each element of the multivariate process Ŝ0N is

Ŝ i,0N (�̂0N ,�)= 1√
N

N∑
t=1

git(�̂0N ,�)vt. (27)

The introduction of the zero-mean random variable vt implies that, conditional on the
sample Xt , the covariance function of the simulated process ŜN (�̂N ,�) is equal to the sample
covariance �̂N (�,�) of the process SN (�̂N ,�). The corresponding conditional
chi-square process is

L̂K (�)= Ŝ
′
0N (�̂0N ,�)V̂

−1

N (�̂N ,�)Ŝ0N (�̂0N ,�)− Ŝ
′
N (�̂N ,�)V̂

−1

N (�̂N ,�)ŜN (�̂N ,�) (28)

and the corresponding test statistic is l̂K = sup
�∈[Kmin,Kmax]

L̂K (�).

Let F̂0 denote the conditional distribution function of l̂K and p̂N =1− F̂0(l̂K ). Following
similar arguments to the proof of Theorem 2 in Hansen (1996), it can be shown that
the quantity p̂N is asymptotically equivalent to pN under both the null and alternative
hypotheses. The conditional distribution function F̂0 is not directly observable so neither is
the random variable p̂N . Nevertheless, these quantities can be approximated to any desired
degree of accuracy using standard simulation techniques. The following algorithm shows
the implementation of this P-value transformation. Let Kb define a grid of b points over the
compact set [Kmin, Kmax], and let �i for i = 1,…, b be the set of equidistant points in such
grid with �1 =Kmin and �b =Kmax. For j =1,…, J with J denoting the number of bootstrap
replications, execute the following steps:

(i) generate the sequence {vjt}N
t=1 of zero mean i.i.d. random variables;

(ii) conditional on the sample Xt = {(r′
t+1, Z ′

t )
′}N

t=1, set the quantities Ŝ
j

N (�̂N ,�i) and

Ŝ
j

0N (�̂0N ,�i);
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(iii) set L̂
j

K (�i)= Ŝ
j

0N (�̂0N ,�i)V̂
−1

N (�̂N ,�i)Ŝ
j

0N (�̂0N ,�i)− Ŝ
j

N (�̂N ,�i)V̂
−1

N (�̂N ,�i)Ŝ
j

N (�̂N ,�i);

(iv) set l̂
j

K = sup
�i∈Kb

L̂
j

K (�i).

This gives a random sample (l̂
1

K ,…, l̂
J

K ) from the conditional distribution F̂N .The percentage

of these artificial observations which exceeds the actual test statistic lK : p̂J
N = 1

J

∑J
j=1 1(l̂

j

K >

l̂K ) is according to the Glivenko–Cantelli theorem a consistent approximation of p̂N as
J →∞. In practice, the null hypothesis H0 is rejected if p̂J

N <�.

Specification test

The system of equations defined in (12) entails the existence of testable restrictions of our
econometric specification determined by the nonlinear risk aversion function (2) and the
parametric portfolio weights (6). Estimation of �0 = (�0, �0,�0) sets to zero mn+2n linear
combinations of the mn2 sample orthogonality conditions gN (�0,�) for each �∈ [Kmin, Kmax].
The correct specification of the model implies that, for a fixed �0, there are mn2 −mn−2n
linearly independent combinations of gN (�̂N ,�0) that should be close to zero but are not
exactly equal to zero. This hypothesis is tested using the Hansen test statistic (Hansen,
1982).

Remember that GN (�̂N , �̂N ) = gN (�̂N , �̂N )′V̂
−1

N (�̂N , �̂N )gN (�̂N , �̂N ). Under the null
hypothesis of correct specification of the model, this statistic satisfies

NGN (�̂N , �̂N )
d→	2

mn2−mn−2n. (29)

The null hypothesis of correct specification of the overidentified system of equations
is rejected at a significance level � if the test statistic is greater than the critical value
	2

mn2−mn−2n,1−�. It is worth noting that the N−rate consistency of the threshold parameter
estimate obtained from (17) allows one to replace �0 by the estimator �̂N without producing
any change on the asymptotic distribution of the test.

V. Empirical application

We are interested in analyzing empirically the effect of considering two regimes in in-
vestor’s risk aversion. To do this, we study the optimal portfolio decisions corresponding
to investment horizons at four years (K =48). We provide the analysis for K =12 to K =36
in an online appendix. For the sake of comparison, we entertain three scenarios: the bench-
mark case characterized by constant and static risk aversion, the case characterized by a
risk aversion coefficient linearly related to our set of state variables, and the threshold type
specification that extends the previous two scenarios by incorporating risk aversion to the
short and the long term.

We follow seminal studies such as Brennan et al. (1997), Brandt (1999) and Campbell
et al. (2003), and consider three investment assets: a one-month Treasury bill as riskless
security, a long-term bond, and an equity portfolio. There are no short-selling restrictions
and the discount factor to measure investor’s patience is � = 0.95. Our data covers the
period January 1980 to December 2016. Monthly data are collected from Bloomberg on

© 2018 The Department of Economics, University of Oxford and John Wiley & Sons Ltd



Risk aversion and optimal asset allocation 53

TABLE 1

Summary statistics of the excess stock return, excess bond return and short-term ex post real interest rates
over the period January 1980 to December 2016 (444 observations). The return horizon is 1 month.

Asset Mean SD 10% perc. Median 90% perc. Skewness Kurtosis

S&P500 index 0.0031 0.0364 −0.1166 0.0067 0.0399 −1.1773 7.9628
G0Q0 Bond index 0.0023 0.0155 −0.0161 0.0025 0.0208 0.1534 5.3247
rf 0.0010 0.0031 −0.0027 0.0010 0.0047 0.4547 5.3857

the S&P 500 and G0Q0 Bond Index. The G0Q0 Bond Index is a Bank of America and
Merrill Lynch U.S. Treasury Index that tracks the performance of U.S. dollar denominated
sovereign debt publicly issued by the U.S. government in its domestic market. The nominal
yield on the United States one-month risk-free rate is obtained from the Fama and French
database. The consumer price index (CPI) time series, used to transform nominal variables
into real variables, and the yield of the Moody’s Baa- and Aaa-rated corporate bonds are
obtained from the U.S. Federal Reserve.

The time-variation of the optimal portfolio weights is described by a set of state variables
that have been identified in the empirical literature as potential predictors of the excess
stock and bond returns and the short-term ex post real interest rates. These variables are
the detrended short-term interest rate (Campbell, 1991), the U.S. credit spread (Fama and
French, 1989), the S&P 500 trend (Aı̈t-Sahalia and Brandt, 2001) and the one-month
average of the excess stock and bond returns (Campbell et al., 2003). The detrended short-
term interest rate detrends the short-term rate by subtracting a 12-month backwards moving
average. The U.S. credit spread is defined as the yield difference between Moody’s Baa-
and Aaa-rated corporate bonds. The S&P 500 trend, or momentum, state variable is defined
as the difference between the log of the current S&P 500 index level and the average index
level over the previous 12 months. We demean and standardize all the state variables in the
optimization process (Brandt et al., 2009).

Table 1 reports summary statistics for the excess S&P 500 index return, excess G0Q0
bond index return and the short-term ex post real interest rates. The results show higher
mean and volatility for the stock index compared to the bond index and short-term real
interest rate series. The skewness reveals a negative skew of the excess stock returns
and a positive skew of the bond and cash series. The estimates of the kurtosis para-
meters also reflect the leptokurtic behaviour of the three assets. Interestingly, the excess
bond return has larger skewness and lower kurtosis than the S&P 500 index. This anoma-
lous result highlights the outperformance of the G0Q0 index over the S&P 500 index
mainly explained by the values of the series during the 2007–2009 period and, in partic-
ular, by the consequences of the subprime crisis on the valuation of the different risky
assets.

Empirical results

The parameter estimates driving the optimal portfolio rules and dynamic risk aversion
coefficients are estimated using a two-step Gauss-Newton type algorithm with numerical
derivatives. The method is implemented in Matlab and code is available upon request. In
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TABLE 2

Parameter estimates of the three different versions of the individual’s objective function (3) for K =48 and
�=0.95. The parameters 
 correspond to the portfolio allocations associated to the state variables Zt: 
·,c

is for the constant term, 
·,1 corresponds to the detrended short-term interest rate, 
·,2 to the U.S. credit spread,

·,3 to the S&P 500 trend and 
·,4 to the one-month average of the excess stock and bond returns. Similarly, the
vector � describes the sensitivities of the risk aversion function (2) with respect to the state variables for the

linear segment and � the corresponding sensitivities for the nonlinear segment of the function. �0 denotes the
estimate of the threshold value corresponding to these parameter estimates. P-values are in squared brackets.

Stock parameters Bond parameters

Nonlinear Linear Constant Nonlinear Linear Constant


s,c 0.186 0.231 0.241 
b,c 0.526 0.496 0.474
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]


s,1 0.089 0.092 0.066 
b,1 −0.162 −0.200 −0.305
[0.006] [0.000] [0.018] [0.003] [0.000] [0.000]


s,2 0.039 0.032 0.085 
b,2 −0.673 −0.762 −0.686
[0.086] [0.013] [0.000] [0.000] [0.000] [0.000]


s,3 −0.002 −0.014 −0.004 
b,3 −0.339 −0.345 −0.367
[0.930] [0.256] [0.727] [0.006] [0.000] [0.000]


s,4 0.335 0.400 0.485 
b,4 −0.294 −0.317 −0.402
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Short-term regime Long-term regime

Nonlinear Linear Constant Nonlinear Linear Constant

�c 3.442 3.576 3.372 �c 0.982 – –
[0.000] [0.000] [0.000] [0.000]

�1 −0.086 −0.188 – �1 −0.321 – –
[0.321] [0.000] [0.370]

�2 0.425 0.412 – �2 0.577 – –
[0.000] [0.000] [0.236]

�3 0.128 0.183 – �3 0.508 – –
[0.264] [0.000] [0.111]

�4 0.277 0.125 – �4 −0.249 –
[0.272] [0.080] [0.588]

�o 7

a first stage we initialize the covariance matrix V̂ N with the matrix Imn ⊗Z ′Z of dimension
mn2, and in a second stage, after obtaining a first set of parameter estimates, we repeat the
estimation replacing this matrix by the Newey-West estimator (14) with l = 12 lags. The
choice of this number of lags is to obtain an estimator sufficiently robust to the presence
of serial correlation in the asymptotic covariance matrix V0. Table 2 reports estimates
of the model parameters (optimal portfolio weights and risk aversion coefficients) for
the three different types of investors for an investment horizon of four years (K =48). The
first column contains the estimates of the nonlinear process distinguishing between the
short and the long term. The second column reports the parameter estimates of a simplified
version of this model characterized by linear dynamics in the risk aversion coefficient. The
third column contains the benchmark static model employed in the literature.

© 2018 The Department of Economics, University of Oxford and John Wiley & Sons Ltd



Risk aversion and optimal asset allocation 55

The empirical analysis presented below reveals four main features. First, the period
that separates the short from the long term is found to be around the seventh month of
the investment horizon. Second, the likelihood ratio tests discussed above provide strong
statistical evidence of the presence of dynamics and nonlinearities in the individuals’ risk
aversion coefficient. In particular, our novel nonlinearity likelihood ratio test reveals the
presence of nonlinearities in risk aversion when compared to the linear dynamic and con-
stant cases. We show in the online appendix that these differences are more relevant as the
investment horizon increases. Third, we observe that the allocation to bonds and stocks
is negatively correlated. This finding is indicative of the existence of flight to quality
effects from stocks to bonds especially during market distress episodes. Fourth, during
these periods we observe a significant increase in the allocation to bonds between the
constant risk aversion model and the nonlinear dynamic model. In contrast, the optimal
allocation to stocks is robust to the form of the risk aversion coefficient even under market
distress.

Table 2 also reveals interesting insights about risk aversion. The constant risk aver-
sion coefficient �c is 3.372 and corresponds to a relative risk aversion coefficient of 29,
obtained as the exponent of �c. The column of the bottom panel reporting the linear dy-
namics in the risk aversion coefficient provides overwhelming statistical evidence of the
significance of the four state variables used in our analysis. These results are supported
by the corresponding likelihood ratio test comparing the linear and constant risk aversion
models that yields a P-value of zero. This is also observed for different investment hori-
zons in the extended version of the empirical application reported in the online appendix.
The analysis of nonlinearities in risk aversion also reveals interesting findings. In partic-
ular, there is strong evidence of nonlinearity reflected in the value of the parameter �c.
The risk aversion coefficient corresponding to the nonlinear model is �c +�c that is equal
to 4.424, and yields a value of relative risk aversion of 83. The overall risk aversion level
clearly increases from the short to the long term. The difference between the short and
the long term is characterized by a threshold value �0 that is estimated from the data. The
estimates of �0 in Table 2 correspond to �̂N = 7. The presence of nonlinearity in the risk
aversion coefficient is tested using the likelihood ratio test introduced in the previous sec-
tion comparing the linear model against the model with two regimes. The P-value is zero
for K = 48. The relevance of the state variables in driving the nonlinearities in risk aver-
sion is mixed. The results in Table 2 only show the statistical significance of the S&P 500
trend. However, unreported results obtained for non-optimal �’s also show the statistical
significance of the one-month average of excess stock and bond returns.

The analysis of the optimal portfolio allocation reveals interesting insights related to
the form of risk aversion. There is clear evidence of the influence of the state variables in
driving the dynamics of the optimal allocation to the bond index. In particular, the four
state variables are statistically significant under the three different types of risk aversion
scenarios considered in the paper. The allocation to stocks is also quite revealing of the
importance of the state variables, with the results being more significant as the invest-
ment horizon increases, see also online appendix for K = 12, 24, 36. Overall, the results
show the statistical significance of the detrended short-term interest rate, the U.S. credit
spread and the one-month average of the excess bond and stock returns. These results are
common across risk aversion scenarios. The analysis of the parameter values also sheds
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Figure 1. Dynamics of risk aversion over the period January 1980 to December 2016 for K = 48, � = 0.95.
Top panel compares the constant and linear versions of the risk aversion function (2). Flat line for constant
risk aversion and dashed line for dynamic risk aversion. Bottom panel compares the two segments defining
the nonlinear version of (2). Dotted line for the short-term dynamics of risk aversion (� parameters in (2)) and
dashed for the long-term dynamics (� parameters in (2)).

interesting findings. Thus, the state variables have a positive effect on the optimal port-
folio weights reflected in positive estimates of the 
s,· parameters. In contrast, the state
variables have a negative effect on the optimal portfolio weights allocated to the bond in-
dex, as indicated by the negative parameter estimates of 
b,·. These results imply negative
comovements between the optimal allocation to the S&P 500 index and the G0Q0 bond
index.

We illustrate this analysis further by plotting the dynamics of the risk aversion func-
tion �t . The top panel of Figure 1 reports the constant and linear dynamic risk aversion
coefficient (2) defined as �(j) = exp(�̂c) and �t(j) = exp(�̂′Zt+j), respectively. The bottom
panel of Figure 1 plots the nonlinear version of the risk aversion function (2). For compar-
ison purposes, we report separately the short-term dynamics exp(�̂′Zt+j) and the long-term
dynamics exp((�̂′ + �̂′)Zt+j). The top panel of Figure 1 exhibits notable fluctuations in risk
aversion during the first half of the 1980 decade due to the sharp increase in oil prices that
led to a worldwide economic recession. This trend is compensated during the 2000−2006
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Figure 2. Dynamics of the optimal portfolio allocation to stocks, bonds and cash over the period 2007–2011
for K =48, �=0.95. Dashed black line for the dynamic nonlinear strategy and solid blue line for the constant
risk aversion strategy.

Great Moderation period. This period was characterized by economic stability, strong
growth, low inflation and low and stable interest rates. During this episode, the dynamic
risk aversion coefficient is below the constant risk aversion coefficient exp(�c). The bottom
panel illustrates the additional effect of long-term risk aversion to the short-term risk aver-
sion component. The contribution of long-term risk aversion to the overall risk aversion
function is very significant during the first half of the decade of 1980 and the 2007–2009
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crisis period. We also observe spikes in long-term risk aversion during the second half of
the 1990 decade.

Figure 2 reports the dynamics of the optimal portfolio allocations to the S&P 500
index (�st), the G0Q0 bond index (�bt) and the one-month Treasury bill (�ct) for K =
48 over the crisis period January 2007 to December 2011. We focus on the comparison
between the constant risk aversion scenario and the case of nonlinear dynamics in risk
aversion. The top panel reports the optimal allocation to stocks, the middle panel reports
the optimal allocation to bonds and the bottom panel the optimal allocation to the Treasury
bill (cash). The sum of the three weights is equal to one by construction. The dashed black
line corresponds to the dynamic nonlinear strategy and the solid blue line to the constant risk
aversion strategy. The allocation to stocks is very stable across time and oscillates between
−0.5 and 0.5. Periods of financial distress accompanied by increases in risk aversion are
corresponded by decreases in the optimal allocation to stocks. Periods of economic boom
accompanied by a decrease in the overall level of risk aversion entail increases in �st . It
is worth noting the large drop in the optimal allocation to stocks during 2008–2009. The
comparison of the optimal allocation to stocks between the constant and nonlinear risk
aversion functions is not significant, though, and suggests that the presence of dynamics in
individuals’ risk aversion does not have a dramatic effect on the allocation to stocks. This
result contrasts with the allocation to bonds reported in the middle panel of Figure 2. This
allocation increases in periods of higher risk aversion providing evidence of a negative
correlation between the allocation to stocks and bonds. Finally, the analysis of the optimal
allocation to cash suggests that this financial instrument is used as a safety asset in periods
of financial distress in which risk aversion increases considerably, see, for example, the
large allocation to cash during the 2007-2009 crisis period reported in the bottom panel of
Figure 2.

VI. Conclusions

This paper studies the long-term asset allocation problem of an individual with different
risk aversion attitudes towards the short and the long term. These different risk aversion
coefficients also incorporate dynamics that are driven by variations in economic conditions
and proxied by a vector of state variables. Our optimal asset allocation strategy is obtained
from a parametric linear portfolio policy that accommodates an arbitrarily large number
of assets in the portfolio. The parameters defining this model are estimated using GMM
procedures applied to an overidentified system of Euler equations describing the first-order
conditions of the individual’s multiperiod maximization problem.

The empirical application to a portfolio of three assets – a one-month Treasury bill
as riskless security, a long-term bond, and an equity portfolio finds significant empirical
evidence of the presence of dynamics in risk aversion. More importantly, we also find
differences in short and long-term risk aversion.The threshold separating the short from the
long term is observed to be around the seventh month of the investment horizon. The long-
term risk aversion coefficient has a significant role in determining the optimal allocation
to fixed income assets such as the one-month Treasury bill and the G0Q0 bond index
but not to the allocation to stocks that remains very stable across risk aversion scenarios.
In particular, we find a large exposure of the investment portfolio to cash and bonds as
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risk aversion increases and such that for very high levels of risk aversion, the allocation
tilts from bonds to cash. The estimation of the parameters driving the linear portfolio
policy reveals the different contributions of the state variables in determining the optimal
portfolio weights. More specifically, we find that the detrended short-term interest rate, the
U.S. credit spread and the one-month average of the excess stock and bond returns have a
positive effect on the allocation to stocks, however, the S&P 500 trend is not statistically
significant. In contrast, the four state variables have a strong negative effect on the optimal
allocation to bonds. These findings provide further empirical evidence of a strong negative
correlation in the allocation between stocks and bonds and the allocation between stocks
and cash.

Final Manuscript Received: March 2018
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Figure S5. Dynamics of the optimal portfolio allocation to stocks, bonds and cash over the
period January 1980 to December 2016 for K = 24, � = 0.95.
Figure S6. Dynamics of the optimal portfolio allocation to stocks, bonds and cash over the
period January 1980 to December 2016 for K = 36, � = 0.95.
Figure S7. Dynamics of the optimal portfolio allocation to stocks, bonds and cash over the
period January 1980 to December 2016 for K = 48, � = 0.95.
Figure S8. Dynamics of the optimal portfolio allocation to stocks, bonds and cash over the
period 2007–2011 for K = 12, � = 0.95.
Figure S9. Dynamics of the optimal portfolio allocation to stocks, bonds and cash over the
period 2007–2011 for K = 24, � = 0.95.
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Figure S10. Dynamics of the optimal portfolio allocation to stocks, bonds and cash over
the period 2007–2011 for K = 36, � = 0.95.
Table S1. Parameter estimates of the three different versions of the individual’s objective
function (3) for K = 12 and � = 0.95.
Table S2. Parameter estimates of the three different versions of the individual’s objective
function (3) for K = 24 and �= 0.95.
Table S3. Parameter estimates of the three different versions of the individual’s objective
function (3) for K = 36 and � = 0.95.
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