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Today’s lecture

The Rendahl (2017) solution method

Pretty much in line with standard log-linearization

methods

Intuition: suppose a 2 state Markov chain: High and low

average output growth

You have one economy (model/set of log-linearized
conditions) conditional on high and other one conditional

on low

You can think of the full model as a combination between
these 2 worlds, where agents internalize the probability of

moving between them



Today’s lecture

e These slides follow Rendahl (2017)

e and the presentation in Wouter’s class-notes: http://

www.wouterdenhaan.com/teach/Occasional.pdf


http://www.wouterdenhaan.com/teach/Occasional.pdf
http://www.wouterdenhaan.com/teach/Occasional.pdf

Model

As we did so far, we start with the set of FOCs that

accomodate to most of our models
E¢ [x¢—1,Xt, Xp41] = 0

where x; is a vector of endogenous and exogenous
variables (keep together predetermined and jump

variables)
Forget about MS for a while

We know we can solve the FOCs around the non-stochastic

steady state, for the vector at x*



Model

e If we log-linearize the conditions, the log-lin system

becomes
Ja, Xt—1 + Jr Xt + J3,  EtXip1 =0

e or simplifying notation
Aupq + Buy + Cupyq =0

e We solve this now with time-iteration, a very intuitive
method that can be used in linearized as well as non-linear

settings



We are looking for a solution as: uy = Fu;_4

plugging in
Auy_q + Bu; + CFu; =0

We can then start guessing F = Fy
Auy_1+ Buy + CFou; =0
working out the expression we get

up = —(B+CFo) *Auy_y

£

we just did one step update of F

Model



Model

e We can repeat until convergence

e We can have a high degree of accuracy (conditional on that
we already log-linearized the system) since this is

super-fast

e It is usually faster that the QZ because you don’t solve a

quadratic system. Instead you need to compute an inverse.



Markov Switching

e If we loglinearize around another point that is not the
steady state

E¢ [x¢—1,%¢t, X¢41] =0

e The solution to this system would be of
F(%,% %) =D

e Now
D+ J;, X1+ 3%+ ]z Bk =0



Markov Switching

D + Auy_1 + Buy 4 Cup = 0

e Now the solution is not centered in 0 but
ur = E+ Fu;_q

e the rest of the method looks alike



Markov Switching

Guess
uy = Eg + Foup—q

plug
D+ Au;_q1 + Buy + C[Eo + Fout] =0

us = (B+CFo)~'(=(D+ CEg)) + —(B+ CFo) 'Au; 4

E] Fl

we got an update for F and E

we keep repeating until convergence



Markov Switching

e Lets move to a MS setting

E¢ [x¢—1, Xt X415 21, Ze41] = 0

e where z are discrete stochastic variables with a given

transition probability



Markov Switching

e We linearize the system wrt the x; variables, but we can’t

do it with respect to z;, because this last one is discrete

e For each regime, we linearize a different set of FOCs
around an arbitrary point (i.e. the steady state in a

particular regime)
Ej[F(x,2,%,2,%)] = D'
e Then for each regime, we have a set of linearized FOCs

D'+]i (xo1—%) 4% (v —%) + Ej[ﬂq“ (xt11(j) = %)[i] =0



Markov Switching

e If we have 2 regimes, using ¥ = x —
A%+ B+ Y O%1(j)+D' =0
j
A% 1 +B'% 4+ CM (1) + C25%1(2) + D =0
A% 1+ B + CPa (1) + C2%,1(2) + D> =0

e Solution has the form: % = E! + Fi%,_q, fori = 1,2



Markov Switching

e Plugging the solution

A% 1 +Bx%+Y 0 [Ef,; + F{;xt} +D =0
j

¢ Using time Iteration we will be able to update the E{,l and

FL in the same way as before, using all the regime systems

e Policy function coefficients of different regimes are

interconnected



Markov Switching: alternative 1

Another alternative is to implement an eigenvalue

decomposition as in Foerster (2015)

It is implemented in a very similar way, start with a guess

of the solution and iterate until convergence

This is also an iterative procedure that extends
Schmitt-Grohé and Uribe (2004)

It is a perturbation approach



Markov Switching: alternative 2

Another alternative is to implement an eigenvalue
decomposition as in Foerster, Rubio-Ramirez, Waggoner,
and Zha (2016)

Rely on the use of Groebner Basis
Allows to recover all solutions from a quadratic system

Problem of the method: it may be unfeasible even for

medium scale models



Markov Switching: alternative 3

e Older method Farmer, Waggoner, and Zha (2011)

e Problem: the underlaying model that the agents solve do
not have MS



Occasionally binding constraints: a

perturbation methods approach

¢ A feature that makes the MS environment easy is that the

switch is exogenously driven

e Models with occasionally binding constraints are
problematic in particular because the timing of the switch

between regimes depend on endogenous variables

e Dealing with this using perturbation methods is possible,
but so far there is no “elegant” local method that solves the

right underlaying model



Guerrieri and lacoviello (2015)

Guerrieri and Iacoviello (2015) presents a method that, in

their examples, works well

Examples: ZLB, Borrowing constraints, capital

irreversibility, to name a few

In any of these, you can define a regime where the

constraint is slack (let’s say, model M;)
an other regime where it is binding, M»

As before, we can derive a set of FOCs for each model



Guerrieri and lacoviello (2015)
e For M, we call it base regime
AtIEtXH_] + BXt + CXt_l + EGt =0

e set of log-linearized conditions

e Inregime 2, the conditions will be different as the obc

becomes relevant
D*+ A EX; 41 +B*Xi + C' Xy 1+ E'¢, =0

e where u in this regime may not share the same SS as

regime 1



Guerrieri and lacoviello (2015)

e Definition 1 (in Guerrieri and Iacoviello (2015)) A
solution for a model with an occasionally binding
constraint is a function f : X;; x €; = X; such that the
conditions under system (M1) or the system (M2) hold,
depending on the evaluation of the occasionally binding

constraint, governed by g and h.

e Here g and h are the OBC when slack or binding,

respectively.



Guerrieri and lacoviello (2015)

We need two assumptions for this method to work
BK conditions hold for M,

If a shock moves the economy from M; to M,, the
economy returns to M; for t < co while agents do not

expect future shocks to occur

In other words, the method pastes a linear solution to a
linear perfect foresight solution (piecewise linear solution
in the end)



Guerrieri and lacoviello (2015)

e The solution we look for is like
X = PiXi—1 + Re + Qrey, for t=1

and
Xy = PiXi—1 + Ry, for all t>2

e note that the solution is non-linear, the matrices are
time-varying

e the algorithm to find these matrices depend on the initial
condition X and the shock €7



Guerrieri and lacoviello (2015)

How do we solve this setting? Easy, solve for regime 1,
ignoring the existence of regime 2... only check the

constraint is slack
Regime 2 is a temporary regime

When in regime 2, you assume that the economy stays
there for T periods and after that, the economy returns

(forever) to regime 1

Iterate until finding the right T



Guerrieri and lacoviello (2015)

The algorithm

e We know that at period T the economy is back to M;,
forever. And we can compute that part of the solution

rigth-away... forany ¢t > T
Xi = PX;_1 + Qe
e Then we go backwards, we can plug Xt = PXr_; and
D* + A{PX1t_1+B* X7 1+ C' X1, =0

together with the assumption of no further shocks



Guerrieri and lacoviello (2015)
The algorithm

¢ Given a state X7_» we can solve for Xr_1, we repeat this

until getting to Xp, using M; or M, depending on the states

¢ Using the guesses for the solution, compute the path for X
to verify if the current guess of regimes. If the guess was

right,s top, if not update the guess and return to step 1



Guerrieri and lacoviello (2015)

Problems with the method

The solution you obtained is not for the original problem...

notice that agents in M; operate as if M, does not exist

The solution is piecewise linear (you basically paste 2

solutions of different models)

Being in regime 2 is like perfect foresight, you know when
you leave it and you solve it assuming you will never go
back

All these may be irrelevant from a quantitative point of
view, in the examples the authors show, the solution seems

fine



FARMER, R. E., D. F. WAGGONER, AND T. ZHA (2011): “Minimal state
variable solutions to Markov-switching rational expectations models,”
Journal of Economic Dynamics and Control, 35(12), 2150-2166.

FOERSTER, A., J. F. RUBIO-RAMIREZ, D. F. WAGGONER, AND T. ZHA (2016):
“Perturbation methods for Markov-switching dynamic stochastic general
equilibrium models,” Quantitative economics, 7(2), 637-669.

FOERSTER, A. T. (2015): “Financial crises, unconventional monetary policy
exit strategies, and agent’s expectations,” Journal of Monetary Economics, 76,
191-207.

GUERRIERI, L., AND M. IACOVIELLO (2015): “OccBin: A toolkit for solving
dynamic models with occasionally binding constraints easily,” Journal of
Monetary Economics, 70, 22-38.

RENDAHL, P. (2017): “Linear Time Iteration,” .

SCHMITT-GROHE, S., AND M. URIBE (2004): “Solving dynamic general
equilibrium models using a second-order approximation to the policy
function,” Journal of economic dynamics and control, 28(4), 755-775.



