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Today’s lecture

• The Rendahl (2017) solution method

• Pretty much in line with standard log-linearization

methods

• Intuition: suppose a 2 state Markov chain: High and low

average output growth

• You have one economy (model/set of log-linearized

conditions) conditional on high and other one conditional

on low

• You can think of the full model as a combination between

these 2 worlds, where agents internalize the probability of

moving between them



Today’s lecture

• These slides follow Rendahl (2017)

• and the presentation in Wouter’s class-notes: http://

www.wouterdenhaan.com/teach/Occasional.pdf

http://www.wouterdenhaan.com/teach/Occasional.pdf
http://www.wouterdenhaan.com/teach/Occasional.pdf


Model

• As we did so far, we start with the set of FOCs that

accomodate to most of our models

Et [xt−1, xt, xt+1] = 0

• where xt is a vector of endogenous and exogenous

variables (keep together predetermined and jump

variables)

• Forget about MS for a while

• We know we can solve the FOCs around the non-stochastic

steady state, for the vector at x∗



Model

• If we log-linearize the conditions, the log-lin system

becomes

Jx̂t−1 x̂t−1 + Jx̂t x̂t + Jx̂t−1Etx̂t+1 = 0

• or simplifying notation

Aut−1 + But + Cut+1 = 0

• We solve this now with time-iteration, a very intuitive

method that can be used in linearized as well as non-linear

settings



Model
• We are looking for a solution as: ut = Fut−1

• plugging in

Aut−1 + But + CFut = 0

• We can then start guessing F = F0

Aut−1 + But + CF0ut = 0

• working out the expression we get

ut = −(B + CF0)
−1A︸ ︷︷ ︸

F1

ut−1

• we just did one step update of F



Model

• We can repeat until convergence

• We can have a high degree of accuracy (conditional on that

we already log-linearized the system) since this is

super-fast

• It is usually faster that the QZ because you don’t solve a

quadratic system. Instead you need to compute an inverse.



Markov Switching

• If we loglinearize around another point that is not the

steady state

Et [xt−1, xt, xt+1] = 0

• The solution to this system would be of

F(x̄, x̄, x̄) = D

• Now

D + Jx̂t−1 x̂t−1 + Jx̂t x̂t + Jx̂t−1Etx̂t+1 = 0



Markov Switching

D + Aut−1 + But + Cut+1 = 0

• Now the solution is not centered in 0 but

ut = E + Fut−1

• the rest of the method looks alike



Markov Switching

• Guess

ut = E0 + F0ut−1

• plug

D + Aut−1 + But + C[E0 + F0ut] = 0

ut = (B + CF0)
−1(−(D + CE0))︸ ︷︷ ︸

E1

+−(B + CF0)
−1A︸ ︷︷ ︸

F1

ut−1

• we got an update for F and E

• we keep repeating until convergence



Markov Switching

• Lets move to a MS setting

Et [xt−1, xt, xt+1; zt, zt+1] = 0

• where z are discrete stochastic variables with a given

transition probability



Markov Switching

• We linearize the system wrt the xt variables, but we can’t

do it with respect to zt, because this last one is discrete

• For each regime, we linearize a different set of FOCs

around an arbitrary point (i.e. the steady state in a

particular regime)

Ej[F(x̄, zi, x̄, zj, x̄)] = Di

• Then for each regime, we have a set of linearized FOCs

Di + Ji
xt−1

(xt−1− x̄) + Ji
xt
(xt− x̄) + Ej[J

j
xt+1(xt+1(j)− x̄)|i] = 0



Markov Switching

• If we have 2 regimes, using x̃ = x− x̄

Aix̃t−1 + Bix̃t + ∑
j

Cjx̃t+1(j) + Di = 0

A1x̃t−1 + B1x̃t + C1,1x̃t+1(1) + C1,2x̃t+1(2) + D1 = 0

A2x̃t−1 + B2x̃t + C2,1x̃t+1(1) + C2,2x̃t+1(2) + D2 = 0

• Solution has the form: x̃t = Ei + Fix̃t−1, for i = 1, 2



Markov Switching

• Plugging the solution

Aix̃t−1 + Bix̃t + ∑
j

Cj
[
Ej

n + Fj
nx̃t

]
+ Di = 0

• Using time Iteration we will be able to update the Ej
n and

Fj
n in the same way as before, using all the regime systems

• Policy function coefficients of different regimes are

interconnected



Markov Switching: alternative 1

• Another alternative is to implement an eigenvalue

decomposition as in Foerster (2015)

• It is implemented in a very similar way, start with a guess

of the solution and iterate until convergence

• This is also an iterative procedure that extends

Schmitt-Grohé and Uribe (2004)

• It is a perturbation approach



Markov Switching: alternative 2

• Another alternative is to implement an eigenvalue

decomposition as in Foerster, Rubio-Ramírez, Waggoner,

and Zha (2016)

• Rely on the use of Groebner Basis

• Allows to recover all solutions from a quadratic system

• Problem of the method: it may be unfeasible even for

medium scale models



Markov Switching: alternative 3

• Older method Farmer, Waggoner, and Zha (2011)

• Problem: the underlaying model that the agents solve do

not have MS



Occasionally binding constraints: a

perturbation methods approach

• A feature that makes the MS environment easy is that the

switch is exogenously driven

• Models with occasionally binding constraints are

problematic in particular because the timing of the switch

between regimes depend on endogenous variables

• Dealing with this using perturbation methods is possible,

but so far there is no “elegant” local method that solves the

right underlaying model



Guerrieri and Iacoviello (2015)

• Guerrieri and Iacoviello (2015) presents a method that, in

their examples, works well

• Examples: ZLB, Borrowing constraints, capital

irreversibility, to name a few

• In any of these, you can define a regime where the

constraint is slack (let’s say, model M1)

• an other regime where it is binding, M2

• As before, we can derive a set of FOCs for each model



Guerrieri and Iacoviello (2015)

• For M1, we call it base regime

AtEtXt+1 + BXt + CXt−1 + Eεt = 0

• set of log-linearized conditions

• In regime 2, the conditions will be different as the obc

becomes relevant

D∗ + A∗t EtXt+1 + B∗Xt + C∗Xt−1 + E∗εt = 0

• where u in this regime may not share the same SS as

regime 1



Guerrieri and Iacoviello (2015)

• Definition 1 (in Guerrieri and Iacoviello (2015)) A

solution for a model with an occasionally binding

constraint is a function f : Xt1 × εt → Xt such that the

conditions under system (M1) or the system (M2) hold,

depending on the evaluation of the occasionally binding

constraint, governed by g and h.

• Here g and h are the OBC when slack or binding,

respectively.



Guerrieri and Iacoviello (2015)

• We need two assumptions for this method to work

• BK conditions hold for M1

• If a shock moves the economy from M1 to M2, the

economy returns to M1 for t < ∞ while agents do not

expect future shocks to occur

• In other words, the method pastes a linear solution to a

linear perfect foresight solution (piecewise linear solution

in the end)



Guerrieri and Iacoviello (2015)

• The solution we look for is like

Xt = PtXt−1 +Rt +Qtεt, for t=1

and

Xt = PtXt−1 +Rt, for all t>2

• note that the solution is non-linear, the matrices are

time-varying

• the algorithm to find these matrices depend on the initial

condition X0 and the shock ε1



Guerrieri and Iacoviello (2015)

• How do we solve this setting? Easy, solve for regime 1,

ignoring the existence of regime 2... only check the

constraint is slack

• Regime 2 is a temporary regime

• When in regime 2, you assume that the economy stays

there for T periods and after that, the economy returns

(forever) to regime 1

• Iterate until finding the right T



Guerrieri and Iacoviello (2015)
The algorithm

• We know that at period T the economy is back to M1,

forever. And we can compute that part of the solution

rigth-away... for any t ≥ T

Xt = PXt−1 +Qεt

• Then we go backwards, we can plug XT = PXT−1 and

D∗ + A∗t PXT−1 + B∗XT−1 + C∗XT−2 = 0

together with the assumption of no further shocks



Guerrieri and Iacoviello (2015)
The algorithm

• Given a state XT−2 we can solve for XT−1, we repeat this

until getting to X0, using M1 or M2 depending on the states

• Using the guesses for the solution, compute the path for X
to verify if the current guess of regimes. If the guess was

right,s top, if not update the guess and return to step 1



Guerrieri and Iacoviello (2015)

• Problems with the method

• The solution you obtained is not for the original problem...

notice that agents in M1 operate as if M2 does not exist

• The solution is piecewise linear (you basically paste 2

solutions of different models)

• Being in regime 2 is like perfect foresight, you know when

you leave it and you solve it assuming you will never go

back

• All these may be irrelevant from a quantitative point of

view, in the examples the authors show, the solution seems

fine
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