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Today’s lecture

• The Krusell and Smith (1998) solution

• The local approximation approach: Winberry (2018)



Heterogeneity in macro

• What is the problem of heterogeneous agents in macro?

• Suppose you have a model with many firms that receive

an idiosyncratic shock? Would this be hard to solve? (hint:

NO... well, a bit, but not as much as the next one)

• What if firms are also subject to aggregate shocks? (hint:

YES!)

• Why? If aggregate shocks, the firms distribution is a state

variable and you need to keep track of it... but this is an

infinitely dimensional object



Heterogeneity in macro

• One of the first (and widely used) approaches is the one by

Krusell and Smith (1998)

• This paper develops a global solution method

• I present an exposition of this paper here, but we will focus

in Winberry (2018), that presents a local solution method

based on perturbation



Krusell and Smith (1998)

• Do changes in income/wealth distribution affect macro?

• In principle, they find that the behavior of macro
aggregates can be be very well described by using the mean
wealth distribution

• How to deal with heterogeneity in macro?

• Here: brief discussion on the method



Krusell and Smith (1998)
The model

• Fixed measure 1 of agents i ∈ [0, 1] with preferences

∑∞
t=0 βt ln(cit)

• Labor endowment follows Markov process εi,t ∈ {0, l̄}.

• That is, they can be employed or unemployed and if

employed they work all their time endowment (leisure

does not enter in the utility function)

• We can also assume that agents are taxed when employed

and get a transfer when unemployed, for now we skip this

• Agents can save in capital (or we call it “assets”... later I

will change the notation to make it in line with Winberry)



Krusell and Smith (1998)
The model

• The budget constraint of agent “i” is

cit + kit+1 = litwt + (1− δ + rt)kit

• Assume no borrowing kit ≥ 0

• Representative firm: Yt = AtKα
t L1−α

t

• Assume aggregate TFP follows MS process (later we just

assume AR(1) process, to avoid dealing with MS in a

Perturbation environment)



Krusell and Smith (1998)
The model

• In equilibrium we will have that

rt = αAtKα−1
t L1−α

t − δ

wt = (1− α)AtKα
t L−α

t



Krusell and Smith (1998)
The model

• Let g be the measure (distribution) of agents over (k, ε),

then

• (At, g) is the aggregate state vector of the economy, the

problem is that this object is infinite-dimensional

• The distribution changes over time: gt+1 = h(gt, At; At+1)

• A potential solution: work with some moments of the

distribution instead of the whole distribution



Krusell and Smith (1998)
The model

• we can write the households problem in recursive way

V(k, ε; g, A) = max
c,k′

{
u(c) + βE

[
V(k′, ε′; g′, A′)|g, A

]}
subject to

c + k′ = r(K, L, A)k + w(K, L, A)l + (1− δ)k

k′ ≥ 0

g′ = h(g, A; A′)



Krusell and Smith (1998)
The model

• Definition: A recursive competitive equilibrium is a law of
motion h, a value and policy (capital accumulation)
functions (V, y) and pricing functions (r, w) such that

1 (V, y) solve the household’s problem given g, r and w.

2 (r, w) are competitive; and

3 h is generated by y.



Krusell and Smith (1998)
The model

• Interpretation: we look for a fixed point in h.

• Agents have a perceived law of motion of the states hp,

compute their policy function and gives rise to the actual

law of motion ha.

• If hp = ha we have a rational expectations equilibrium.

• Method: given a distribution, iterates until perceived and

actual law of motions coincide



Krusell and Smith (1998)
Solution method

• Guess a law of motion for aggregate capital. Given log

utility, log linear law of motion is not a bad guess

ln(K′) = a0 + b0 ln(K); A = Al

ln(K′) = a1 + b1 ln(K); A = Ah

• g1 is characterized by a0, a1, b0, b1

• find optimal policy given g1, compute the actual law of

motion and stop if they are closed enough



Krusell and Smith (1998)
The model

• The problem now can be written as

V(k, ε; K, A) = max
c,k′

{
u(c) + βE

[
V(k′, ε′; K′, A′)|g, A

]}
subject to

c + k′ = r(K, L, A)k + w(K, L, A)l + (1− δ)k

ln(K′) = a0 + b0 ln(K); A = Al

ln(K′) = a1 + b1 ln(K); A = Ah

k′ ≥ 0



Krusell and Smith (1998)
The method

• Obtain a nonlinear decision rule k′ = y1(k, ε; K, A)

• Simulate it, and compare the aggregate behavior of the

moments with H1.

• We want to find a fixed point for H1 in the form of a vector

a0, a1, b0, b1.

• Once we do it, stop. Otherwise, we may need to reconsider

the functionla form of the distribution or add more

moments.



Krusell and Smith (1998)
The method

• The method may become slow when dealing with larger

models

• Also methods are not general or easy to apply

• We explore now another extension of the perturbation

approach



Winberry (2018)
The method

• The method combines some local and global solution

methods

• First, instead of working with infinitely large objects, it

approximates the cross-sectional distribution of

heterogeneous agents using a parametric family

• Following Algan, Allais, and Den Haan (2008) to

approximate the stationary cross-section distribution

• combine this with perturbation



Winberry (2018)
The method

• The method is a mix between global and local methods

• 3 steps

1 approximate equilibrium objects using finite-dimensional
global methods wrt individual state variables

2 compute stationary equilibrium of the finite dimensional
model without aggregate shocks but with idiosyncratic
shocks

3 compute aggregate dynamics using Taylor expansions
around the stationary steady state



Winberry (2018)
The method

• First we want to get a simple expression for the

distribution of agents

• In this setting there are 2 problems: (1) first the

infinite-dimensional feature, but also (2) given the

borrowing constraint, we may have mass in a point

• we first deal with the latest issue



Winberry (2018)
The method: step 1

• m̂ε,t is the fraction of households with labor productivity ε

at the borrowing constraint

• start by characterizing the mass at the constraint

m̂ε,t+1 =
1

π(ε)

[
∑̃

ε

(1− m̂ε̃,t)π(ε̃)π(ε|ε̃)
∫

1{a′t(ε̃, a) = a}gε̃,t(a)da

+ ∑̃
ε

m̂ε̃,tπ(ε̃)π(ε|ε̃)1{a′t(ε̃, a) = a}
]

• This eq says how this mass evolves, we are just counting

individuals at the constraint



Winberry (2018)
The method: step 1

• We now turn to find the distribution of agents that are not

in the constraint

• approximate it using finite-dimensional object: use Algan,

Allais, and Den Haan (2008)

gε,t(k) ≈ g0
ε,t exp

{
g1

ε,t(k−m1
ε,t) +

ng

∑
i=1

gi
ε,t

[
(k−m1

ε,t)
i −mi

ε,t

]}

• ng is the degree of approximation,
{

gi
ε,t
}ng

i=0 are parameters

and
{

mi
ε,t
}ng

i=0 are centralized moments of the distribution



Winberry (2018)
The method: step 1

• What are these moments?

• (to make notation in line with Winberry, I use assets to

refer to capital, switch k by a) and write the nonnegativity

constraint in a more general way as a′ ≥ a

• parameters and moments need to be consistent. In

particular,

m1
ε,t =

∫
agε,t(a)da

mi
ε,t =

∫
(a−m1

ε,t)
igε,t(a)da, ∀i = 2, ..., ng

• The distribution is characterized by its moments



Winberry (2018)
The method: step 1

• If no borrowing limit is imposed, the evolution of its

moments is given by

m1
ε
′ =

1
π(ε) ∑̃

ε

π(ε̃)π(ε|ε̃)
∫

a′(ε̃, a)gε̃(a)da

mi
ε
′ =

1
π(ε) ∑̃

ε

π(ε̃)π(ε|ε̃)
∫ [

a′(ε̃, a)−m1
ε
′
]

gε̃(a)da

• The law of motion of the distribution can be approximated

by solving for m moments... that is, (A, g) by (A, m)



Winberry (2018)
The method: step 1

• With borrowing limit, the evolution of its moments is
given by

m1
ε,t+1 =

1
π(ε)

[
∑
ε̃

(1− m̂ε̃,t)π(ε̃)π(ε|ε̃)
∫

a′t(ε̃, a)gε̃,t(a)da + ∑
ε̃

m̂ε̃,tπ(ε̃)π(ε|ε̃)a′t(ε̃, a)

]

mi
ε,t+1 =

1
π(ε)

[
∑
ε̃

(1− m̂ε̃,t)π(ε̃)π(ε|ε̃)
∫ [

a′(ε̃, a)−m1
ε
′
]i

gε̃,t(a)da + ∑
ε̃

m̂ε̃,tπ(ε̃)π(ε|ε̃)
[
a′(ε̃, a)−m1

ε
′
]i
]

• The law of motion of the distribution can be approximated

by solving for m moments... that is, (A, g) by (A, m)



Winberry (2018)
The method: step 1

• The integrals in the previous expression are solved using

Gauss-Legendre Quadrature (i.e. define nodes and

weights and substitute the integral by summations)

• Use the same quadrature to approximate aggregate capital

Kt = ∑
ε

π(ε)
mg

∑
j=1

ωjajgε,t(aj)



Winberry (2018)
The method: step 1

• Next, we approximate the households decision rules.

Why? the borrowing constraint

• If this were not the case, we would just go straight to build

the system F of first order conditions

• So, here we have another way of dealing with the OBC

• Approximate Conditional Expectation with Chebyshev

Polynomials

ψt(ε, a) = E
[
β(1 + rt+1)ct+1(ε

′, a′t(ε, a))−σ
]



Winberry (2018)
The method: step 1

• the savings and consumption policies that can be derived

from the conditional expectations using

a′t(ε, a) = max
{

a, wtl + (1 + rt)a− ψt(ε, a)
−1
σ

}
ct(ε, a) = wtl + (1 + rt)a− a′t(ε, a)

• We approximate the conditional expectation with

Chebyshev polinomials

ˆψt(ε, a) ∼ exp

{
nψ

∑
i=1

θεi,tTi(ξ(a))

}



Winberry (2018)
The method: step 1

• Here, ξ(a) is the order of approximation

• Ti is the polinomial of order i

• ξ(a) = 2 a−a
ā−a − 1 transforms the asset interval to the interval

-1 to 1 (Cheb pols are defined in this interval)

• θ are coefficients



Winberry (2018)

 

Figure: Winberry (2016)



Winberry (2018)
The method: step 1

• Here the xt = [zt, m]

• yt = [θt, gt, rt, wt]

• Now the rest of the steps are the standard, first solve for

the steady state and then the dynamics using our standard

Perturbation methods
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