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So far

So far we studied (log-)linear approximation methods

We solved for the dynamics and we know how the solution

looks like

Up to first order in simple models we can work algebraically

No good for welfare analysis nor cases where non-linearities

matter



Today’s lecture

Perturbation method

Non-linear perturbation

We will see how higher order solutions look like

We need 2 theorems for perturbation theory

Taylor’s theorem (again!)

Implicit function theorem for Rn



Basic idea of perturbation

Consider this function f (x, ε) = 0

we want to solve this function for x

ε is a parameter

Assume for each value of ε the equation has solution(s) for x

This means there is a collection of equations in x parametrized

by ε

Let x = x(ε) smooth function. Then f (x(ε), ε) = 0

The key to apply perturbation method (as in linearization) is

that we can solve the equation for x, for a particular value of ε



Basic idea of approximation
Suppose we know x(0) Implicit differentiation defines x′(ε)

fx(x(ε), ε)x′(ε) + fε(x(ε), ε) = 0

This is useless, it depends on x(ε), which is unknown. But we

know it for ε = 0

Then,

x′(0) = − fε(x(0), 0)
fx(x(0), 0)

The linear approximation around ε = 0 is

x(ε) ≡ x(0)− fε(x(0), 0)
fx(x(0), 0)

ε



Basic idea of approximation

We can go on for a 2nd order

(fxxx′ + fxε)x′ + fxx′′ + fεxx′ + fεε = 0

fxx(x′)2 + fxεx′ + fxx′′ + fεxx′ + fεε = 0

fxx(x′)2 + 2fxεx′ + fxx′′ + fεε = 0

At ε = 0

x′′(0) = − fxx(x(0), 0)(x′(0))2 + 2fxε(x(0), 0)x′(0) + fεε(x(0), 0)
fx(x(0), 0)

x(ε) ≡ x(0) + x′(0)ε +
1
2

x′′(0)ε2



A simple example

This example is from Jesus Fernandez-Villaverde notes

Solve the following equation (find the roots)

x3 − 4.1x + 0.2 = 0

such that x < 0

Perturbation approach will be useful implemented in 3 steps

• Rewrite the problem in terms of a perturbation parameter

• Solve the problem for a given value of the parameter

• Approximate the solution of the problem around that point



A simple example

The first step is to introduce a perturbation parameter in order

to rewrite the problem

There are many ways of doing it (even in the true models we

are going to use)

For instance here

x3 − (4 + ε)x + 2ε = 0

Here we are using ε ≡ 0.1



A simple example

Now, solve for the new problem defining x = g(ε)

Note that for ε = 0, the equation is

x3 − 4x = 0

That has roots for x = −2, 0, 2. Take x = −2. Then g(0) = −2



A simple example

Build the approximate solution around ε = 0

Using Taylor’s theorem

x = g(0) +
∞

∑
n=1

gn(0)
n!

εn



A simple example

• The approximation of order 0

• Recall g(0) = −2

x3 − 4.1x + 0.2 = 0

−8 + 8.2 + 0.2 = 0.4



A simple example

• The approximation of order 1

g(ε)3 − (4 + ε)g(ε) + 2ε = 0

• Take derivatives with respect to ε

3g(ε)2g′(ε)− g(ε)− (4 + ε)g′(ε) + 2 = 0

• Recall we approximate around ε = 0

• Recall we just found that g(0) = −2

8g′(0) + 4 = 0

• This implies that g′(0) = − 1
2



A simple example

• The approximation of order 1 around the approximation

point, by Taylor’s Theorem is then

x = g(0) +
g′(0)

1!
ε1

• Recall that in our case ε = 0.1. This implies that

x = −2− 1/2 ∗ 0.1 = −2.05



A simple example

• Let’s plug this value in the equation to see how good the

approximation is

x3 − 4.1x + 0.2 = 0

−8.615125− 8.405 + 0.2 = −0.010125

• Much better than the approximation of order 0



A simple example

• The approximation of order 2

• Take a second derivative of the equation

3g(ε)2g′(ε)− g(ε)− (4 + ε)g′(ε) + 2 = 0

• with respect to ε

6g(ε)(g′(ε))2 + 3g(ε)2g′′(ε)− g′(ε)− g′(ε)− (4+ ε)g′′(ε) = 0



A simple example

• Recall we focus in ε = 0

6g(0)(g′(0))2 + 3g(0)2g′′(0)− g′(0)− g′(0)− 4g′′(0) = 0

• Recall we just found that g(0) = −2 and g′(ε) = −1/2

8g′′(0)− 2 = 0

• This implies that g′′(0) = 1
4



A simple example

• The approximation of order 2 around the approximation

point, by Taylor’s Theorem is then

x = g(0) +
g′(0)

1!
ε1 +

g′′(0)
2!

ε2

x = −2− 1/2ε + 1/8ε2

• Recall that in our case ε = 0.1. This implies that

x = −2− 1/2 ∗ 0.1 + 1/4 ∗ 0.01 = −2.04875



A simple example

• Plugging this value here

x3 − 4.1x + 0.2 = 0

• it is 4.997e(−004)

• Much better than the approximation of order 0



A simple example: Important

• The first step was to transform the model adding a

perturbation parameter

• Reason: we want to solve for the exact 0th order

approximation



Nonlinear solution methods

• Remember the very basic problem

max E0

∞

∑
t=0

βt log(ct)

ct + kt+1 = eztkα
t + (1− δ)kt

zt = ρzt−1 + σεt

with εt ∼ N(0, 1)



Nonlinear solution methods

• Equilibrium Conditions

1
ct

= βEt
1

ct+1

(
1 + αezt+1kα−1

t+1 − δ
)

ct + kt+1 = eztkα
t + (1− δ)kt

zt = ρzt−1 + σεt



Implicit function theorem

If H(x, y) : Rn × Rm → Rm is Ck, H(x0, y0) = 0, and Hy(x0, y0) is

not singular, then there is a unique function h : Rn → Rm such

that y0 = h(x0) and for x near x0, H(x, h(x)) = 0. Furthermore,

if H is Ck, then h is Ck, and its derivatives can be computed by

implicit differentiation of the identity H(x, h(x)) = 0

The techniques used in perturbation will use these theorems

Together they allow us to implicitly compute derivatives of h
with respect to x at x0

we will be able to consider implicitly defined functions

This is very powerful



Approximation + IFT

Keep in mind we want to solve a functional system (our

unknowns are functions)

H(d) = Et[f (·)] = 0

Where the unknowns are the decision rules d

Taylor’s theorem allow us to use perturbation that solves the

problem by specifying

dn(x, θ) =
n

∑
i=0

θi(x− x0)
i

Then we use the implicit function theorem to find θi’s



Nonlinear solution methods

• Equilibrium Conditions

1
c(kt, zt)

= βEt

(
1 + αeρzt+σεt+1(k(kt, zt))α−1 − δ

)
c(k(kt, zt), ρzt + σεt+1)

c(kt, zt) + k(kt, zt) = eztkα
t + (1− δ)kt



Nonlinear solution methods

• We transform the problem introducing a small

perturbation parameter

• The perturbation parameter is the standard deviation of

the innovation σ

• If we set this parameter to 0, we are in the known world of

the non-stochastic steady state and we know how to solve

it

• Then we will look for: ct = c(kt, zt; σ) and kt+1 = k(kt, zt; σ)



Nonlinear solution methods

• Equilibrium Conditions

1
c(kt, zt; σ)

= βEt

(
1 + αeρzt+σεt+1(k(kt, zt; σ))α−1 − δ

)
c(k(kt, zt; σ), ρzt + σεt+1; σ)

c(kt, zt; σ) + k(kt, zt; σ) = eztkα
t + (1− δ)kt



Nonlinear solution methods

• Equilibrium Conditions

Et

[
1

c(kt, zt; σ)
− β

(
1 + αeρzt+σεt+1(k(kt, zt; σ))α−1 − δ

)
c(k(kt, zt; σ), ρzt + σεt+1; σ)

]
= 0

c(kt, zt; σ) + k(kt, zt; σ)− eztkα
t − (1− δ)kt = 0



Nonlinear solution methods

• We will take derivatives with respect to kt, zt and σ

• Apply Taylor‘s theorem and build a solution around the

deterministic steady state



Nonlinear solution methods

• Asymptotic expansion of the consumption function

ct = c(k, 0; 0) + ck(k, 0; 0)(kt − k) + cz(k, 0; 0)zt + cσ(k, 0; 0)σ

+
1
2

ckk(k, 0; 0)(kt− k)+
1
2

ckz(k, 0; 0)(kt− k)zt +
1
2

ckσ(k, 0; 0)(kt− k)σ

+
1
2

czz(k, 0; 0)z2
t +

1
2

czk(k, 0; 0)(kt − k)zt +
1
2

czσ(k, 0; 0)ztσ

+
1
2

cσσ(k, 0; 0)σ2 +
1
2

cσk(k, 0; 0)(kt − k)σ +
1
2

cσz(k, 0; 0)ztσ

... (1)



Nonlinear solution methods

• Asymptotic expansion of the capital function

kt+1 = k(k, 0; 0) + kk(k, 0; 0)(kt − k) + kz(k, 0; 0)zt + kσ(k, 0; 0)σ

+
1
2

kkk(k, 0; 0)(kt− k)+
1
2

kkz(k, 0; 0)(kt− k)zt +
1
2

kkσ(k, 0; 0)(kt− k)σ

+
1
2

kzz(k, 0; 0)z2
t +

1
2

kzk(k, 0; 0)(kt − k)zt +
1
2

kzσ(k, 0; 0)ztσ

+
1
2

kσσ(k, 0; 0)σ2 +
1
2

kσk(k, 0; 0)(kt − k)σ +
1
2

kσz(k, 0; 0)ztσ

... (2)



Nonlinear solution methods

Equilibrium Conditions

F(kt, zt; σ) = Et

 1
c(kt,zt;σ)

− β
(1+αeρzt+σεt+1 (k(kt,zt;σ))α−1−δ)

c(k(kt,zt;σ),ρzt+σεt+1;σ)

c(kt, zt; σ) + k(kt, zt; σ)− eztkα
t − (1− δ)kt

 = 0

Note (to simplify notation later)

F(kt, zt; σ) = EtH(ct, ct+1, kt, kt+1, zt, zt+1; σ)



Zero order approximation

First, evaluate σ = 0

F(k, 0; 0) = 0

Then we are studying the steady state

c = c(k, 0; 0) = (αβ)
α

1−α − (αβ)
1

1−α

k = k(k, 0; 0) = (αβ)
1

1−α



First order approximation

Take derivative of F(kt, zt; σ) evaluated at k, 0, 0

Fk(k, 0; 0) = 0

Fz(k, 0; 0) = 0

Fσ(k, 0; 0) = 0



First order approximation

Using our previous notation

F(kt, zt; σ) = Et

[
H(c(kt, zt; σ), c(k(kt, zt; σ), ρzt + σεt+1;

σ), kt, k(kt, zt; σ), zt, ρzt + σεt+1)

]
= 0

Fk(k, 0; 0) = H1ck + H2kkck + H3 + H4kk = 0

Fz(k, 0; 0) = H1cz + H2(kkck + ckρ) + H4kz + H5 + H6ρ = 0

Fσ(k, 0; 0) = H1cσ + EtH2(kσck + czεt+1 + cσ) + H4kσ + EtH6εt+1 = 0



First order approximation

The first 2 expressions define a quadratic system (in 4

unknowns: ck, cz, kk, kz)

Fk(k, 0; 0) = H1ck + H2kkck + H3 + H4kk = 0

Fz(k, 0; 0) = H1cz + H2(kkck + ckρ) + H4kz + H5 + H6ρ = 0

we will learn how to deal with them computationally (although

we just saw how to do it algebraically)



First order approximation

• The last equation is homogeneous linear system in cσ and

kσ.

Fσ(k, 0; 0) = H1cσ +EtH2(kσck + czεt+1 + cσ)+H4kσ +EtH6εt+1 = 0

• Hence, we have the certainty equivalence result we discuss
before

• Now we want to deal with higher terms



Second order approximation

• Take second order derivatives of F(kt, zt; σ) evaluated at k,

0 and 0

Fkk(k, 0; 0) = 0

Fkz(k, 0; 0) = 0

Fkσ(k, 0; 0) = 0

Fzz(k, 0; 0) = 0

Fzσ(k, 0; 0) = 0

Fσσ(k, 0; 0) = 0



Second order approximation

• We substitute the coefficients we already know

• Notice the system is one of 12 equations in 12 unknowns

• Notice that the crossed terms with kσ and zσ are zero

• Now we want to deal with higher terms



Second order approximation

• Important: we have a term in σ2

• This is a correction for risk

• We don’t have certainty equivalence anymore!



Higher orders

• We can take higher order derivatives for the whole system

• The procedure is recursive

• Accuracy gains: in simple models Arouba et al shows that

5th order terms have the magnitude of computer precision

(that is very small), higher terms will not improve

significantly the solution

• Burden: take analytical derivatives of large models

• We can do it in the computer! Symbolic toolbox in matlab,

dynare, mathematica
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