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Abstract
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1 Introduction

The concepts of long memory and long range dependence describe the property that many time
series models possess, despite being stationary, higher persistence than that predicted by usual short
run linear models, such as ARMA processes. The same type of persistence, with slow decay in the
autocorrelation function, has also been observed in many economic series, such as the increments
of trending data, measures of volatility, and errors in long run equilibrium relationships; see Henry
and Zaffaroni (2003) for a review of applications of long memory time series in economics.

Although several long memory parametric models can be found in the literature, such as Frac-
tionally Integrated ARMA (ARFIMA) models (Hosking (1981), Granger and Joyeaux (1980)) or
fractional Gaussian noise (e.g. Sinai (1976)), there has long been an interest in modelling separately
the long and short run features of time series. Since parametric models and the weak limit of partial
sums of a large class of long memory processes describe the degree of persistency by means of a
memory parameter, usually denoted as d in the econometrics literature, much attention has been
paid to stating alternative, semiparametric definitions of long range dependent behavior and, based
on them, corresponding estimates of d that avoid the specification of short memory properties.

If Xt is a covariance stationary sequence, long memory is described in the time domain by means
of the asymptotic relation

γX(j) = Cov (Xt, Xt+j) ∼ cXj
2d−1, as j →∞, (1)

|cX | > 0, where a ∼ b means that the limit of a/b is 1. The constant cX can be replaced by
a slowly varying function at infinity to achieve greater generality. Equation (1) states that the
autocovariance function γX(j) decays to zero as a power function of the lag j, where the decay rate
is determined by the long memory parameter d, so that when d > 0 we have:

∞∑
j=−∞

γX(j) = ∞, (2)

and it is required that d < 0.5 for covariance stationarity.

Alternatively, long range dependence is reflected in the spectral density fX(λ) of Xt, defined by

γX(j) =
∫ π

−π

fX(λ) exp(ijλ)dλ, j = 0,±1, . . . ,

through its behavior at low frequencies,

fX(λ) ∼ GX |λ|−2d as λ→ 0, (3)

for some finite constant GX > 0. Therefore, the spectral density has a pole at zero frequency when
d > 0, agreeing with (2) and reflecting the increasing contribution of low frequency components
to the variance decomposition of Xt. Negative values of d can be allowed, although they are not
likely to occur in practice unless some differencing has first been applied to Xt. In this case (3)
indicates that there is no contribution from the zero frequency to the variance of Xt, as would
happen after first differencing a stationary time series, and such a property is termed negative
memory or ’antipersistency’. However as long as d > −0.5, the series remains invertible. When
d = 0, fX (0) is bounded and positive, and we will say that the series is weakly dependent. Note
that (1) does not specify the behavior of γX for short lags nor does (3) gives the properties of fX

for cyclical, seasonal or short run frequencies.
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Long memory behaviour is reflected also in the fact that the sample mean converges to the true
expectation of Xt at the rate T d− 1

2 , slower than the usual root-T rate for uncorrelated and weakly
dependent sequences, where T is the sample size (Adenstedt (1974)). Similarly, the asymptotic
properties of other basic statistics, such as partial sums (Mandelbrot and Van Ness (1968)), auto-
covariances (Hosking (1996)) or least squares (LS) regression coefficients (Yajima, (1988, 1991)),
depend primarily on the value of d.

The long memory concept can also cross the stationarity border d = 1
2 and it can be useful

to characterize the long run behavior of nonstationary time series by means of the class of inte-
grated I(d) processes. This class nests the unit root I(1) processes as well as the I(0) weakly
dependent processes. Here the concept of integration refers to the application of fractional differ-
ence/integration filters, defined by the formal binomial expansion of (1 − L)d in terms of the lag
operator L, such that for any real d 6= 1, 2, . . .

(1− L)d =
∞∑

j=0

ψj(d)L
j , ψj(d) =

Γ (j − d)
Γ (j + 1)Γ (−d)

, j = 0, 1, . . . , (4)

where Γ(z) =
∫∞
0
xz−1e−xdx is the gamma function and Γ (0) /Γ (0) = 1. Thus ψ0 (d) = 1 and

ψj(d) = ψj−1(d)(j − d − 1)/j, j ≥ 1, and, using Stirling’s formula, the coefficients ψj(d) behave
as Γ(−d)−1j−d−1 for j → ∞. When d is a positive integer, only the first d + 1 terms are nonzero
and we obtain the usual definition of the d-th difference operator. Then Xt is I(d), i.e. integrated
of order d, if (1− L)d

Xt is weakly dependent. Note that the transfer function associated with the
fractional filter (1− L)d is∣∣1− eiλ

∣∣2d
= (2 sin |λ/2|)2d ∼ |λ|2d as λ→ 0, (5)

giving a simple intuition of the effect of fractional differencing in the frequency domain by means
of annihilating the contribution at zero frequency.

Under this framework, the concept of long memory and fractional integration are key to the
modelling of long run relationships among nonstationary trending time series. As proposed by
Granger (1981), the series are (fractionally) cointegrated if a linear combination has reduced mem-
ory compared with the original series, reflecting a long run equilibrium (at least when the linear
combination is stationary). When the memory levels are no longer an a priori assumption, as under
the CI(1, 0) paradigm stressed since Engle and Granger (1987) with I(1) levels and I(0) errors, the
inference problems complicate because of the unknown degree of cointegration.

We will first focus in Section 2 on semiparametric methods of estimating d in the frequency
domain. These are the most used in practice and many extensions, including studies of validity
and subsequent refinements, have appeared. We also provide a guide to the choice of the range of
frequencies where the relationship (3) holds approximately for a particular problem with a given
sample size, trying to balance bias and variability. In this vein we present several proposals for
bias reduction, borrowing ideas from nonparametric statistics, as well as methods that consider
all frequencies but are semiparametric in essence. In Section 3 we consider the extension of the
previous methods to nonstationary fractionally integrated series and discuss the possibility of long
memory at other nonzero frequencies, such as cyclical and seasonal ones. Section 4 describes appli-
cations of semiparametric methods to the analysis of economic series, stressing those to cointegrated
multivariate nonstationary time series and to white noise series with persistence in their volatility.
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2 Memory estimation

Each of the different asymptotic characterizations of long memory can lead to alternative estimates
of the memory parameter where population quantities are replaced by sample equivalents. The rate
of convergence of partial sums was early exploited by the rescaled range, or R/S, analysis introduced
by Hurst (1951) and Mandelbrot and Wallis (1968). Time domain estimates proposed by Robinson
(1994c) where analyzed by Hall, Koul and Turlach (1997), while Geweke and Porter-Hudak (1983),
GPH henceforth, propose to use frequency domain estimates.

Frequency domain semiparametric methods exploit the asymptotic relationship (3) as a valid
(semiparametric) model for the spectral density at low frequencies, in particular, the first m Fourier
frequencies, λj = 2πj/T , j = 1, . . . ,m, where

1
m

+
m

T
→ 0 as T →∞, (6)

so that m is increasing with the sample size T in the asymptotics, but a slower rate. These local
methods are also termed narrow band estimates, because only a degenerating band of the spectrum
around λ = 0 is modelled, basically in terms of the long memory parameter d. The idea behind
all of the estimates in the frequency domain is to compare the spectral density fX with its sample
counterpart, the periodogram, across this range of frequencies and to find the value of d that best
suits the data by alternative criteria. Define the discrete Fourier transform (DFT) of Xt, for a
sample of T observations, t = 1, . . . , T , as

wX(λ) =
1√
2πT

T∑
t=1

Xt exp(iλt),

and the periodogram of Xt as
IX(λ) = |wX(λ)|2 .

Note that wX(λj), 0 < j < T , is invariant to shifts in mean, rendering periodogram based methods
independent of mean estimation by dropping the zero frequency.

2.1 Log-periodogram estimation

GPH observed that by taking logs of both sides of (3) we obtain

log fX (λj) ∼ logGX − 2d log λj , j = 1, . . . ,m

and on substituting log fX(λj) by log IX(λj), we obtain the linear regression model on the log-
periodogram,

log IX (λj) = α+ dzj + uj , j = 1, . . . ,m (7)

with regressor zj = −2 log λj and α = logGX − η, η = 0.5772 . . . being Euler’s constant. The error
term uj = log IX (λj) /GXλ

−2d
j +η is expected to be asymptotically homoskedastic with zero mean,

since, at least for weakly dependent Gaussian time series, each log IX (λj) /fX (λj) is approximately
an independent and identically distributed (iid) logχ2

2/2 random variate, with expectation −η.
Based on this fact, GPH proposed running an ordinary LS (OLS) regression to estimate d in (7).
Robinson (1995a) justified such a procedure for multivariate Gaussian time series with possibly
different memory parameters in the interval (−0.5, 0.5) by trimming the first ` Fourier frequencies,
since for fixed j, IX (λj) is asymptotically biased for fX (λj) when d 6= 0. Later, Hurvich, Deo and
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Brodsky (1998) showed that such trimming is not necessary for the log-periodogram (LP) estimate
to have nice asymptotic properties. It is also possible to replace the regressor zj in the LP regression
by some asymptotically equivalent sequence, such as −2 log(2 sinλj/2), which arises naturally if Xt

is fractionally integrated, cf. (5), as proposed by GPH.

Robinson (1995a) proposed pooling a finite number of adjacent periodogram ordinates to improve
efficiency. For K = 1, 2, . . ., fixed, (assuming m/K is integer), define

Y
(K)
X,j = log

(
K∑

k=1

IX(λj+k−K)

)
, j = K, 2K, . . . , m,

so the (pooled) LP estimate considered in Robinson (1995a) for a stationary and invertible time
series is

d̂LP
m =

∑
j

Λ2
j

−1∑
j

ΛjY
(K)
X,j

 .

In this section all summations in j run for j = K, 2K, . . . , m and Λj = zj − zm, zm =
(K/m)−1∑

j zj . Obviously for K = 1, d̂LP
m is the OLS coefficient in (7). Shimotsu and Phillips

(2002) considered the case where K is allowed to grow in the asymptotics with T .

The asymptotic distribution of d̂LP
m is given by

2m1/2
(
d̂LP

m − d
)

d→ N
(
0,Kψ̇(K)

)
(8)

where ψ(z) = (d/dz) log Γ (z) is the digamma function, and the upper dot denotes first derivative.
Under (6), semiparametric estimates with root-m convergence as in (8) are infinitely inefficient
compared to usual parametric estimates which are standardized by T 1/2, but, by contrast, are more
robust to misspecification. Note that the variance of the log of a χ2

2K/2 random variable (which
is the weak limit of the centered Y

(K)
X,j ) is equal to ψ̇(K) and

∑
j Λ2

j ∼ 4m/K as m → ∞. For
K = 1 we find that Kψ̇(K) = π2/6 and using that ψ̇(K + 1) = ψ̇(K) − K−2 it can be shown
that Kψ̇(K) decreases with K, so choosing K large increases the (asymptotic) efficiency. In regular
cases for which (3) is a good approximation, including ARFIMA processes, m can be chosen to just
satisfy

log2 T

m
+
m5

T 4
→ 0 (9)

as T → ∞ (see Robinson (1995a, Assumption 6) and Hurvich et al. (1998, Theorem 2)). A
consistent estimate of GX can be obtained as ĜLP

m = exp (α̂m − ψ(K)) , where α̂m is the OLS
intercept and noting that the expectation of a log(χ2

2K/2) variate is ψ(K).

A multivariate N × 1 time series Xt, with possibly different memory parameters, can be consid-
ered if we assume that (3) holds for the spectral density of each of the components of Xt, that is,
the diagonal elements of the spectral density matrix fX(λ), defined implicitly by

ΓX(j) = Cov(Xt,Xt+j) =
∫ π

−π

fX(λ)eijλdλ,

satisfy fnn (λ) ∼ Gnn|λ|−2dn , n = 1, . . . , N, as λ → ∞. Defining the coherence between the r-th
and s-th components of Xt by

Rrs (λ) =
frs (λ)

(frr (λ) fss (λ))1/2
, r, s,= 1, . . . , N,
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Robinson (1995a) justified the LP regression when the coherence matrix at zero frequency is non-
singular, so the long run variance matrix of Xt is full rank, and the elements of fX(λ) satisfy
(d/dλ) log frs (λ) = O(|λ|−1) as λ→∞.

The simultaneous estimation of d =(d1, . . . dN )′ and of the intercept coefficients α = (α1, . . . , αN )′

is obtained by means of a multivariate regression with dependent vector Y(K)
j =

(
Y

(K)
1,j , . . . , Y

(K)
N,j

)′
,

(
α̂m

d̂LP
m

)
= vec

∑
j

Y(K)
j Zj

∑
j

ZjZ′j

−1


where Zj = (1, zj)
′
. Then ĜLP

n,m = exp (α̂n,m − ψ(K)) , n = 1, . . . , N , and the asymptotic properties
of the LP regression coefficients are described by m1/2

log T (α̂m −α)

2m1/2
(
d̂LP

m − d
) d→ N

(
0, K

[
1 −1
−1 1

]
⊗ Ω(K)

)
,

where, paralleling standard OLS theory, Ω(K) can be estimated consistently by

Ω̃(K)
m =

K

m

∑
j

ũjũ′j ,

using the OLS residual vector ũj . The factor K/(4m) in the approximate variance of d̂LP
m ,

Ω(K)K/(4m), can be replaced in finite samples by (
∑

j Λ2
j )
−1 to match the standard computa-

tion of standard errors in linear regression. Velasco (2000) and Hurvich, Moulines and Soulier
(2002) show the robustness of these results to some non-Gaussian linear processes.

Following Robinson (1995a), we can define the Wald-type tests of the hypothesis that H0 : Pd =
%, where P is a given q ×N matrix and % is a q × 1 vector, which rejects the null if

Wm =
4m
K

(
Pd̂LP

m − %
)′ (

PΩ̃(K)
m P′

)−1 (
Pd̂LP

m − %
)

is significantly large compared to the χ2
q distribution. If some restrictions on d are assumed, we

can obtain more efficient estimates by using this information. Thus, if it is known that d1 = · · · =
dN = d, so that d = d1N , 1N being the N × 1 vector of ones, the following generalized LS (GLS)
type of estimate is proposed,

d̂GLS
m = −

∑
j Λj1′N Ω̃(K)−1

m Y(K)
j

21′N Ω̃(K)−1
m 1N

∑
j Λ2

j

,

whose asymptotic variance can be consistently estimated by (K/4)
(
1′N Ω̃(K)−1

m 1N

)−1

.

The idea of the LP regression has been extended to variance decompositions other that the fre-
quency domain one given by the periodogram. The tapered periodogram provides a first possibility,
which is analyzed in Section 3.1 in the context of memory estimation of nonstationary processes.
A second proposal is related to wavelet analysis in the context of self-similar processes, which are
characterized by a scale invariant property and whose increments display long range dependence
(Taqqu (2003)). The sample wavelet coefficients are the counterpart of the DFT giving a decompo-
sition of the variance of Xt at different scales. The wavelet coefficients present some fundamental
characteristics similar to those of the DFT, i.e. they reproduce in the wavelet domain the power
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laws defining the scale invariance of self-similar and long memory processes, being weakly correlated
(see, e.g. Twefik and Kim (1992) and Bardet, Lang, Moulines and Soulier (2000)). This has been
exploited in the design of estimates similar to the LP regression by Jensen (1999) and Bardet et al.
(2000) among others. Furthermore, the wavelet coefficients under appropriate choices of the mother
wavelet function can satisfy some higher order properties (zero moments) which guarantee robust-
ness to deterministic trends, similar to those that can be obtained through tapering (see equation
(30) below). These properties, together with computationally efficient multiresolution algorithms,
make wavelets amenable for the analysis of long range dependent series with possible trending or
nonstationary behaviors.

2.2 Local Whittle estimation

Based on a proposal of Künsch (1987), Robinson (1995b) studied the Gaussian semiparametric
estimate of d based on the minimization of a local Whittle frequency domain (minus) log-likelihood,

Lm(d,G) =
1
m

m∑
j=1

{
logGλ−2d

j +
IX(λj)
Gλ−2d

j

}
,

using the semiparametric model (3), which is valid for such frequencies. Given the interval of
admissible estimates of d by D = [∇1,∇2], where ∇1 and ∇2 are numbers such that − 1

2 < ∇1 <

∇2 <
1
2 , the local Whittle (LW) estimates are defined by

(d̂LW
m , ĜLW

m ) = arg min
d∈D,0<G<∞

Lm(d,G).

Concentrating out ĜLW
m we obtain that

d̂LW
m = arg min

d∈D
Rm(d),

where

Rm(d) = log ĜLW
m (d)− 2d

1
m

m∑
j=1

log λj , ĜLW
m (d) =

1
m

m∑
j=1

λ2d
j IX(λj). (10)

For linear time series with homoskedastic martingale difference innovations, with spectral density
satisfying the same regularity conditions as for LP estimation, Robinson (1994b) found that d̂LW

m

is consistent and its asymptotic normal distribution is

2m1/2
(
d̂LW

m − d
)

d→ N (0, 1) , (11)

so its asymptotic variance is free of nuisance parameters and smaller than that of the LP estimate.
Therefore, when using the same number of frequencies, LW estimation is more efficient that the LP
regression. The bandwidth m has to satisfy

1
m

+
m5 log2m

T 4
→ 0 (12)

if the approximation (3) has error O
(
|λ|2−2d

)
as λ→ 0.

Following Lobato and Robinson (1998) and Lobato (1999), we can propose a joint estimate of
the memory parameters of a vector Xt based on the semiparametric multivariate model for the
spectral density matrix fX(λ), such as

fX(λ) ∼ Λ (d)ΞXΛ (d) as λ→ +0, (13)
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where ΞX is a positive definite (complex) hermitian matrix and Λ (d) = diag
(
λ−d1 , . . . , λ−dN

)
. For

fractional models with long run variance matrix GX we have that ΞX = ΞX (d) = Φ (d)GXΦ∗ (d),
where GX = {gab} is a real positive definite matrix, Φ (d) = diag

(
eiπd1/2, . . . , eiπdN /2

)
, and ∗means

simultaneous transposition and complex conjugation. Therefore (13) ignores some information
about how the real and imaginary parts of ΞX (d) relate in terms of d.

The local Whittle likelihood, as a function of the memory parameters d and the scale matrix Ξ,
is given by

Lm(d,Ξ) =
1
m

m∑
j=1

{
log det

[
Λj(d)ΞΛj(d)

]
+ tr

[
(Λj(d)ΞΛj(d))−1IX(λj)

]}
, (14)

where Λj(d) = diag{λ−d1
j , . . . , λ−dN

j } and IX(λj) = wX(λj)wX(λj)∗ is the periodogram matrix of
Xt. Since

Lm(d,Ξ) =
1
m

m∑
j=1

{
2 log det [Λj(d)] + log det [Ξ] + tr

[
Ξ−1Λ−1

j (d) IX(λj)Λ−1
j (d)

]}
we find that

∂

∂Ξ
Lm(d,G) =

1
m

m∑
j=1

{
Ξ−1 −Ξ−1

[
Λ−1

j (d) IX(λj)Λ−1
j (d)

]
Ξ−1

}
,

and on setting

Ξ̂m(d) =
1
m

m∑
j=1

Λ−1
j (d) IX(λj)Λ−1

j (d), (15)

we obtain from (14) the following concentrated objective function (Lobato (1999))

Υm(d) = − 2
m

N∑
i=1

di

m∑
j=1

log(λj) + log det
[
Ξ̂m(d)

]
,

because log det [Λj(d)] = − log(λj)
∑N

i=1 di.

The estimation procedure proposed by Lobato (1999) is a two step estimator based on this
objective function. The first step is to compute the univariate local Whittle estimate for every
series (denote that vector by d̂(1)

m ) and the second step is obtained through the following expression

d̂(2)
m = d̂(1)

m −

(
∂2Υm(d)
∂d∂d′

∣∣∣∣
bd

(1)
m

)−1(
∂Υm(d)
∂d

∣∣∣∣
bd

(1)
m

)
. (16)

Further iterations could be considered, e.g. d̂(s)
m , s = 2, 3, . . . , having the same first order efficiency.

An estimator of the long run variance GX can be constructed as

ĜX,m = ĜX,m

(
d̂(2)

m

)
= Re

{
Φ̂∗

mΞ̂X,mΦ̂m

}
(17)

where Ξ̂X,m = Ξ̂m(d̂(2)
m ), Φ̂m = Φ

(
d̂(2)

m

)
and Re stands for real part.

Extending Robinson’s (1995b) analysis, Lobato (1999) showed that

m1/2
(
d̂(2)

m − d
)

d→ N
(
0,E−1

)
,
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where E = 2
(
IN + ΞX ◦Ξ∗−1

X

)
and ◦ denotes the element by element Hadamard matrix product.

He assumed that Xt is a linear process given by

Xt = µ+
∞∑

j=0

Ajεt−j

where εt is a martingale difference sequence with constant first four conditional moments, and the
transfer function A (λ) =

∑∞
j=0Aje

ijλ is differentiable around λ = 0. The asymptotic variance can

be estimated by using the previous estimate of ΞX, obtaining Êm = 2
(
IN + Ξ̂X,m◦ Ξ̂∗−1

X,m

)
.

In order to achieve more efficient estimation of the vector d, we could consider explicitly that
ΞX is a function of d, ΞX (d) = Φ (d)GXΦ (d)∗ , see Shimotsu (2003). Furthermore, if we want to
impose a rate for the semiparametric approximation (13) valid for fractional time series, we could
consider

fX(λ) = Λ̄ (d)GXΛ̄∗ (d)
(
1 +O

(
λ2
))

as λ→ +0, (18)

where now Λ̄ (d) = diag
(
λ−d1ei(π−λ)d1/2, . . . , λ−dN ei(π−λ)dN /2

)
, so we can obtain Λ̄ (d)GXΛ̄∗ (d) ∼

Λ (d)ΞX (d)Λ (d) as λ→ +0.

As with LP estimates, efficient improvements are possible if a valid restriction on the vector d
is used. If d1 = · · · = dN = d, then we can set

d̃LW
m = arg min

d∈D
Υ̃m(d) (19)

where

Υ̃m(d) = −2N
m
d

m∑
j=1

log(λj) + log det
[
ĜX,m(d1N )

]
,

and now ĜX,m(d1N ) = Re(Ξ̂X,m), given the restriction of a unique d. The asymptotic variance of
d̃LW

m , 1/4N, reflects the extra information used.

Wald tests are easily implemented as with LP estimates, but using the objective function Υm(d)
we can also use the Lagrange Multiplier and Likelihood Ratio principles. An LM-type test of
d1 = · · · = dN = 0 was proposed by Lobato and Robinson (1998). The LM test for H0 : Pd = %

uses the statistic

LMm = m
∂Υm(d̃LW

m )
∂d′

[
PÊmP′

] ∂Υm(d̃LW
m )

∂d
,

compared to a χ2
q distribution, where d̃LW

m minimizes Υm(d) subject to Pd = % and Êm can be
computed also under this restriction. For the test of d1 = · · · = dN = d0, the LM statistic reduces
to

LMm =
m

4N

[
∂Υ∗

m(d0)
∂d

]2
with q = 1.

2.3 Averaged periodogram estimation

Many alternative semiparametric estimates have been proposed, both in the time and frequency
domain. We now describe briefly the proposal of Robinson (1994a), the averaged periodogram
estimate of d,

d̂AP
m,q =

1
2
− log {FX,T (qλm) /FX,T (λm)}

2 log q
,

10



where q ∈ (0, 1) is a user chosen tuning parameter and FX,T is the averaged periodogram (AP),

FX,T (λ) =
2π
T

[Tλ/2π]∑
j=1

IX (λj) .

The AP will be important in the discussion of narrow band estimates of long run relationships.

Note that d̂AP
m,q ∈ (−∞, 0.5], so it cannot estimate nonstationary values of d. Robinson (1994a)

showed that FX,T (λm) is a consistent estimate of FX (λm) =
∫ λm

0
fX(z)dz if m−1 + mT−1 → 0

with the sample size when Xt is a linear process with martingale innovations. Thus it is easy to
show that, under (3), d̂AP

m,q is also consistent for d.

Lobato and Robinson (1996) analyzed the asymptotic distribution of the AP estimate. This
is only normal for d < 0.25, for which fX(λ) is square integrable around λ = 0. In particular, if
d ∈ (0, 0.25) ,

m1/2
(
dAP

m,q − d
) d→ N

(
0,

(1 + q−1 − 2q−2d)
log2 q

(0.5− d)2

1− 4d

)
.

For d ∈ (0.25, 0.5) the asymptotic distribution of dAP
m,q is a functional of a Rosenblatt variate. The

asymptotic variance of dAP
m,q when d < 0.25 depends on q and d, and by its minimization Lobato

and Robinson (1996) find that for each d there is an optimal value of q. Lobato (1997) extends
some of these results to a multivariate time series framework and Robinson and Marinucci (2000)
to nonstationary vectors, see Section 3.

2.4 Bias reduction and bandwidth choice

The most important issue when applying any semiparametric memory estimate is the decision on
the number of Fourier frequencies m to be used. For these frequencies we regard the model (3) as
approximately valid, but increasing m leads to a reduction of the variance of estimates at the cost
of an increment in bias due to the consideration of too high frequencies where the semiparametric
model is not appropriate. We concentrate in this section on univariate and no pooled (K = 1)
estimates.

Under the assumption that

fX(λ) = |2 sin(λ/2)|−2df∗(λ) (20)

where f∗(λ) is nonnegative, even, integrable, twice continuously differentiable and positive at λ = 0,
Hurvich et al. (1998) obtained the Mean Square Error (MSE) of the LP estimate and derived the
expression for the MSE-optimal bandwidth,

mopt
LP = T 4/5

[
27

128π2

(
f∗(0)
f̈∗(0)

)2
]1/5

,

assuming for the second derivative f̈∗ of f∗ that f̈∗(0) 6= 0. This expression gives the MSE-optimal
rate for m, T 4/5, but depends on the short run dynamics of Xt described by f̈∗. Based on this
formula, Hurvich and Deo (1999) devised a plug-in estimate of the optimal constant in mopt

LP by
means of an augmented LP regression,

log IX (λj) = α+ dwj + ρ
λ2

j

2
+ uj , j = 1, . . . ,mρ, (21)

11



where now wj = −2 log(2 sin(λj/2)). Noting that ḟ∗(0) = 0 by the evenness of f∗(λ), the OLS
estimate of ρ in the regression (21) is consistent for b2 = f̈∗(0)/f∗(0), since we can write

log f∗(λ) = log f∗(0) + b2
λ2

2
+O(λ3)

if f∗(λ) is smooth enough. The initial choice of the auxiliary bandwidthmρ is given bymρ = AT a for
some a > 3/4 and some positive constant A. Note that when m is proportional to T 4/5, m = BT 4/5

say, the bandwidth conditions for the asymptotic normality (8), e.g. (9), are no longer valid, so
asymptotic inference has to be adapted to take into account the asymptotic bias. Thus, introducing
a bias correction, it is obtained in this case that

2m1/2
(
d̂LP

m − d
)
− 4

9
π2b2B

4/5 d→ N
(

0,
π2

6

)
,

leading to bias corrected versions of d̂LP
m when using MSE-optimal bandwidths.

Andrews and Guggenberger (2003) generalize the previous idea to obtain LP estimates with
reduced bias in augmented regressions. To that end, it is assumed that

log f∗(λ) = log f∗(0) +
r∑

k=1

b2k
λ2k

(2k)!
+ o(λ2r) as λ→ 0+, (22)

where

bk =
(

d
dλ

)k

log f∗(λ)

∣∣∣∣∣
λ=0

,

and the polynomial LP (PLP) estimate d̂PLP
r,m of order r is given by the corresponding OLS coefficient

in the linear regression

log IX (λj) = α+ dzj +
r∑

k=1

ρkλ
2k
j + uj . (23)

Andrews and Guggenberger (2003) show that the OLS estimate of this regression satisfies

2m1/2
(
d̂PLP

r,m − d
)
− vT (r) d→ N

(
0, cr

π2

6

)
(24)

if m = O
(
T 2φ/(2φ+1)

)
, φ = 2 + 2r, where vT (r) is the asymptotic bias, c0 = 1 and cr =(

1− µ′rΓ
−1
r µr

)−1
, r ≥ 1, with

µr,k =
2k

(2k + 1)2
, k = 1, . . . , r

Γr,ik =
4ik

(2k + 2i+ 1) (2i+ 1) (2k + 1)
, i, k = 1, . . . , r.

Assuming enough smoothness of log f∗ in (22) so that the error term is O(λ2r+2), the asymptotic
bias vT (r) is given by

vT (r) = m(5/2)+2rT−(2+2r)b2+2rτ r,

where

τ r =
κrcr

2
(
1− µ′rΓ

−1
r ξr

)
,

κr =
(2π)2+2r(2 + 2r)
(3 + 2r)!(3 + 2r)
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and ξr =
(
ξr,1, . . . , ξr,r

)′ with

ξr,k =
2k(3 + 2r)

(2r + 2k + 3)(2k + 1)
, k = 1, . . . , r.

The bias term vT (r) disappears in the asymptotic distribution (24) when a slower bandwidth m =
o
(
T 2φ/(2φ+1)

)
is used instead of the MSE-optimal one. This analysis also allows calculation of the

asymptotic MSE of the PLP estimate, generalizing the expression for the optimal bandwidth,

mopt
PLP = T (4+4r)/(5+4r)

[
π2cr

24(4 + 4r)τ2
rb

2
2+2r

]1/(5+4r)

.

The unknown b2+2r can be estimated by means of an augmented regression similar to (21).

Similar studies have been conducted for other semiparametric estimates. Thus, for spectral
densities satisfying

f(λ) = Gλ−2d (1 + Eγλ
γ + o(λγ)) , as λ→ 0, (25)

for some γ ∈ (0, 2], Eγ 6= 0, Henry and Robinson (1996) approximate the MSE of the LW estimate,
for which the optimal bandwidth is given by

mopt
LW = T 2γ/(1+2γ)

[
(1 + γ)4

2γ3E2
γ(2π)2γ

]1/(1+2γ)

, (26)

and propose an iterative method to estimate the unknown constant Eγ in mopt
LW .

For spectral densities satisfying (20), Andrews and Sun (2004) investigate the MSE, optimal
bandwidth and asymptotic properties of a generalization of the LW estimate similar to the PLP.
They consider the local polynomial Whittle likelihood

Lr,m(d,G,θ) =
1
m

m∑
j=1

{
log
[
Gλ−2d

j exp (−pr(λj ;θ))
]

+
IX(λj)

Gλ−2d
j exp (−pr(λj ;θ))

}
, (27)

for r ≥ 0, where

pr(λj ;θ) =
r∑

k=1

θkλ
2k
j , θ = (θ1, . . . , θk)′ .

This likelihood includes higher order terms from expanding logf∗(λ) around λ = 0 up to order 2r,
as in (22). Concentrating out G we obtain that(

d̂PLW
r,m ,θPLW

r,m

)
= arg min

d,θ∈D
Rr,m(d,θ),

where

Rr,m(d,θ) = log ĜPLW
r,m (d,θ)− 1

m

m∑
j=1

pr(λj ;θ)− 2d
1
m

m∑
j=1

log λj + 1,

ĜPLW
r,m (d,θ) =

1
m

m∑
j=1

λ2d
j exp (−pr(λj ;θ)) IX(λj).

Andrews and Sun (2004) show the consistency and asymptotic normality of
(
d̂PLW

r,m ,θPLW
r,m

)
when m4r+1/T 4r → ∞ and m2φ+1/T 2φ = O(1), φ = 2 + 2r, under similar regularity assumptions
to Robinson (1995b) together with (22). In particular,

2m1/2
(
d̂PLW

r,m − d
)
− vT (r) d→ N (0, cr) .
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Therefore, the PLW estimate has the same asymptotic bias as the PLP estimate, but retains its
efficiency even if we consider r correcting terms. Similarly, it is possible to generalize the expression
for the optimal bandwidth of the LW estimate,

mopt
PLW = T (4+4r)/(5+4r)

[
cr

16(1 + r)τ2
rb

2
2+2r

]1/(5+4r)

.

Note that for r = 0 and γ = 2 this gives the same expression (26) for mopt
LW given by Henry and

Robinson (1996), noting that E2 = b2/2, which is the only unknown in the optimal bandwidth.

Robinson and Henry (2003) provide a different approach to the problem of bias reduction.
They propose M-estimates based on higher order kernels that are able to nest different classes
of semiparametric estimates of d, such as versions of the LP and LW estimates. This class of
M-estimates is based on a kernel function kq(u) with the property that∫ 1

0

kq(u)du = 1,

and setting Uiq =
∫ 1

0
(1 + log u)u2ikq(u)du, it is required that Uiq = 0, i = 1, . . . , q−1, and Uqq 6= 0

for some q ≥ 1. Other important ingredients are a real valued monotonic function ψ, which is
particularized to the Box-Cox transformation, ψα(z) = (zα − 1)/α for α > 0, and ψ0(z) = log z,
and a function g(λ) which is asymptotically equivalent to λ, in the sense that

g(λ) = λ+Gλ3 + o(λ3) as λ→ 0+,

such as g(λ) = 2 sin(λ/2). Then the q-order kernel M-estimate of d, d̂Mq
m , is given as a solution of

the equation ∑
j

kq

(
j

m

)
vqj(g)ψα

(
Ī
(K)
X (λj)g(λj)2d̂Mq

m

)
= 0

where

vqj(g) = log g(λj)−
∑

j kq

(
j
m

)
log g(λj)∑

j kq

(
j
m

)
and

Ī
(K)
X (λj) =

K∑
k=1

IX(λj+k−K), j = K, 2K, . . . ,m.

Thus, when K = 1, q = 1 and α = 0 we obtain the LP estimate, whereas with α = 1 we get the
LW estimate and with values of α ∈ (0, 1) we interpolate between both methods. The asymptotic
variance also varies with α between those found for α = 0, 1. On the other hand, for a particular
ψ, choosing a higher order kernel with q ≥ 2 allows room for potential bias and MSE reduction,
under the assumption that f∗(λ) = f(λ)g(λ)2d is 2q + 1 times differentiable, cf. (22). Finally, the
choice of g does not affect the asymptotic variance, but may have important effects on bias given
this previous assumption.

The reviewed bias reduction and estimation of optimal bandwidth techniques rely on a priori
assumptions on the smoothness of the spectral density, given by the value of the parameter γ or
the number of derivatives of log f∗. In practice, it is not easy to obtain information about such
restrictions, so adaptive techniques have been developed. Giraitis, Robinson and Samarov (1997)
showed that the LP estimate is rate optimal among a class of semiparametric estimates for processes
with spectral density of γ degree of smoothness, cf. (25), whereas Giraitis, Robinson and Samarov
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(2000) propose an adaptive estimate to the unknown degree of smoothness based on a modified
LP regression, whose asymptotic risk is larger than the optimal risk only by a logarithmic factor.
Related results have been obtained for the polynomial LP estimate by Andrews and Guggenberger
(2003) and for the LW estimate by Andrews and Sun (2004). Alternatively, Hurvich and Beltrao
(1994) propose a cross-validation method to estimate the integrated local MSE of any estimate of d
around zero frequency and base a bandwidth choice on the minimization of such an estimate. For
the AP estimate, Robinson (1994a) provides expressions for the MSE and the optimal bandwidth,
which Delgado and Robinson (1996a) estimate by means of a plug-in iterative method, and Delgado
and Robinson (1996b) find optimal kernels for the averaging.

2.5 Global methods: FEXP and FAR estimates

The fractional exponential (FEXP) estimate, proposed by Robinson (1994c), consists of a LP re-
gression similar to (23), but expanding log f∗ on a cosine basis, so that the coefficients θk =∫ π

−π
log f∗(λ) cos kλdλ define the cepstrum of f∗. The FEXP estimate d̂FEXP

r of d is given by the
corresponding coefficient in the OLS estimation of

Y
(K)
X,j = dzj +

r∑
k=0

θk cos kλj + uj , j = K, 2K, . . . ,m,

allowing for periodogram pooling, K ≥ 1. If we let r → ∞ with T, then we can approximate non-
parametrically the whole of f∗, so these methods are called global, in contrast with local methods,
such as the LP or LW estimates. The asymptotic properties of the FEXP estimate have been an-
alyzed by Moulines and Soulier (1999) for Gaussian series and by Hurvich, Moulines and Soulier
(2002) for non-Gaussian series, see also Hurvich and Brodsky (2001). The analysis relies on the
smoothness of f∗, so that the θk are square summable, and on a related restriction on r,

1
r

+
r log5 T

T
+
(
T

r

)1/2 ∞∑
k=r

|θk| → 0.

Then (
T

r

)1/2 (
d̂FEXP

r − d
)

d→ N
(
0,KΩ(K)

)
,

showing that the convergence rate of d̂FEXP
r can be very close to the parametric rate of T 1/2 if r can

be chosen very small so that it approximates f∗ with fidelity. Iouditsky, Moulines and Soulier (2002)
investigate an adaptive FEXP estimate, extending results of Hurvich (2001), who had proposed a
local version of Mallow’s CL criterion to select a FEXP model by minimizing the asymptotic MSE.

Another global estimate in a similar spirit is the Fractional AutoRegressive (FAR) estimate,
which is based on fitting an ARFIMA(r, d, 0) model with r increasing with sample size T. Bhansali
and Kokoszka (2001) have showed the consistency of this estimate when based on a full-band Whittle
estimate.

3 Extensions

We consider in this section two natural extensions of the semiparametric model (3). The first
relaxes the assumption of stationarity, d < 0.5, so that it is possible to check the robustness of
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the previous methods to the trending nonstationary of fractionally integrated series for large d. In
this case special modifications of semiparametric memory estimates might be necessary to robustify
inference against possible nonstationarity of unknown degree. The second extension considers the
possibility of persistence at frequencies different from zero, which poses new problems and requires
some extra care when applying semiparametric methods.

3.1 Nonstationary long memory

There are alternative ways of defining possibly nonstationary trending processes with persistence
characterized by a long memory parameter d which can take values larger than 0.5, nesting in
this way I(1) unit root processes. Following Hurvich and Ray (1995), we can say that the non-
stationary process {Xt} has memory parameter d ∈

[
1
2 ,

3
2

)
if the zero mean covariance stationary

process ∆Xt = (1− L)Xt has spectral density

f∆X(λ) = |1− exp(iλ)|−2(d−1)f∗(λ),

where f∗(λ) is as in (20). Then, we can write, for any t ≥ 1,

Xt = X0 +
t∑

k=1

νk, (28)

where νt = ∆Xt and X0 is a random variable not depending on time t. We also need now to define
a generalized spectral density function, which should be equal to the usual spectral density function
for stationary Xt, but without restrictions on the value of d when not. From (5), the natural option
is to extend the definition of fX to

fX(λ) = |1− exp(iλ)|−2f∆X(λ) = |1− exp(iλ)|−2df∗(λ),

when d ≥ 0.5, so that fX(λ) satisfies (3) for some d < 1.5, irrespective of Xt being stationary or
not. Note that for nonstationary Xt (d ≥ 0.5), fX is not integrable in [−π, π] and is not a proper
spectral density. We do not assume that f∗ is the spectral density of a stationary and invertible
ARMA process as would be the case if νt followed a fractional ARIMA model. For example, f∗

may have (integrable) poles or zeros at frequencies beyond the origin.

When estimating the memory of nonstationary series, the above definition of nonstationarity
based on the increments leads to the so called ’differencing and adding back’ method. This consists
of taking first differences when it is known that d ∈ (0.5, 1.5) , estimating the memory of the
increments by d̂∆X

m , say, and then setting d̂m = d̂∆X
m + 1. Similarly, series with higher degree of

nonstationarity, d ≥ 1.5, can be defined in terms of successive partial sums, and the actual memory
estimated with successive differencing to guarantee that the true d is in (−0.5, 0.5). However, such
a method requires some a priori knowledge on the degree of nonstationarity of the observed series,
which in many cases is difficult to obtain, such as when we suspect that d ≈ 0.5. A first approach
to this problem is the analysis of the previous semiparametric methods, designed for covariance
stationary series, under this more general nonstationary framework without assumptions on whether
d < 0.5 or d ≥ 0.5. This study is based on some robustness properties of the periodogram.

For short memory processes, the periodogram is an inconsistent but asymptotically unbiased
estimate of fX at continuity points of the spectral density and is approximately independent across
frequencies λj . Robinson (1995a) extended such results for stationary long range dependent series.
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Interestingly, the normalized periodogram IX(λj)/fX(λj) still has a limit expectation equal to
one (and the DFTs at different frequencies are asymptotically uncorrelated) for non-stationary
integrated time series at Fourier frequencies moving slowly away from the origin (Hurvich and Ray
(1995), Velasco (1999b)). Note also that the DFT is invariant to X0 at nonzero Fourier frequencies.
In fact, it is possible to show the consistency of the LP estimate when d < 1, while the asymptotic
distribution remains the same, cf. (8), but only when d < 0.75 (Velasco (1999b)). Velasco (1999a)
obtained related results for the LW estimate, which is also asymptotically normal with an asymptotic
variance of 0.25 when d < 0.75.

3.2 Tapering

The limitations of the applicability of usual semiparametric inference for large d when there is no
a priori assumption on the degree of nonstationarity is due to the periodogram bias caused by the
leakage from the nonstationary zero frequency. To alleviate this problem, the traditional remedy
in time series analysis is tapering. Define the tapered DFT of Xt, for t = 1, . . . , T and a taper
sequence {ht}T

t=1, as

w
(h)
X (λ) =

(
2π

T∑
t=1

h2
t

)−1/2 T∑
t=1

htXt exp(iλt),

and the tapered periodogram as I(h)
X (λ) =

∣∣∣w(h)
X (λ)

∣∣∣2. The usual DFT has ht ≡ 1. Typically,
ht downweights the observations at both extremes of the sequence, leaving largely unchanged the
central part of the data. The improved bias properties of the tapered periodogram also have
an immediate counterpart in terms of the DFT. Thus, if ht is differentiable and vanishes at the
boundaries, we obtain by summation by parts that

w
(h)
X (λ) ≈ eiλ

1− eiλ

[
w

(h)
∆X(λ) +

w
(ḣ)
X (λ)
T

]
(29)

for λ 6= 0, explaining why a sufficiently smooth taper can reproduce the usual properties of the DFT
with difference-stationary series. Furthermore, if for some positive integer p, the tapered DFT of
integer powers of time t satisfies

w
(h)

t` (λjp) = 0, ` = 0, 1, . . . , p− 1, (30)

then the taper scheme ht is able to remove polynomial trends in the observed sequence when
concentrating on the restricted set of frequencies λjp, jp 6= 0. This property generalizes the shift
invariant property of the usual DFT and helps to define a class of tapers of order p. Lobato and
Velasco (2000) provide an application of this property to avoid the effect of nonlinear trends in the
traded volume of stocks when estimating its persistence.

There are several alternative tapering schemes having desirable properties to control leakage
from remote frequencies. Following Velasco (1999a,b), we may consider a general class of so called
tapers of type-I and orders p = 1, 2, . . ., denoted as {h(1,p)

t }, whose non-scaled DFT satisfies

T∑
t=1

h
(1,p)
t eitλ =

a(λ)
T p−1

(
sin[Tλ/2p]
sin[λ/2]

)p

, (31)

where a(λ) is a complex function whose modulus is positive and bounded. Some examples of tapers
which satisfy (31) are the triangular Bartlett window (p = 2), the Parzen window (p = 4) or
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Zhurbenko’s (1979) class for integer p. Zhurbenko’s tapers are obtained by increasingly smooth
convolutions of the uniform density, and when p = 1 give the nontapered DFT weights, ht ≡ 1;
when p = 3 they are similar to the full cosine bell ht = (1− cosλt) /2; while for p = 4 they are very
close to Parzen’s, given when T = 4N by

ht =

{
1− 6

[
{(2t− T )/T}2 − |(2t− T )/T |3

]
, N < t < 3N ;

2 {1− |(2t− T )/T |}3 , 1 ≤ t ≤ N or 3N ≤ t ≤ 4N.

Type-I tapers provide interesting insights into the behavior of the periodogram of time series
with spectral densities displaying peaks or troughs, but have the undesirable property of introducing
some extra dependence among adjacent periodogram ordinates. This leads to some restrictions in
the design and inference of frequency domain memory estimates. The use of a restricted set of
Fourier frequencies, such as in (30), to guarantee orthogonality generally leads to an efficiency loss
(Velasco (1999b)). To reduce the size of such sets of omitted frequencies, Hurvich, Moulines and
Soulier (2002) and Hurvich and Chen (2000) propose alternative type-II complex data tapers,

h
(2,p)
t = h

(2,p)
t,T = (1− exp(iλt))

p−1
, p = 1, 2 . . . , (32)

so the tapered periodogram and DFT are obtained by

I
(2,p)
X (λ) = |w(2,p)

X (λ)|2 =

(
2π

T∑
t=1

|h(2,p)
t |2

)−1 ∣∣∣∣∣
T∑

t=1

h
(2,p)
t Xte

itλ

∣∣∣∣∣
2

.

It can be shown that
∑T

t=1 |h
(2,p)
t |2 = Tap, where ap =

(
2(p−1)

p−1

)
. Here the order p is equivalent to

p−1 as set by Hurvich et al. (2002), but is equivalent to the order p of Velasco (1999a,b) or Hurvich
and Chen (2000), so both tapers of order p = 1 give the usual DFT and periodogram. However, for
higher order tapers, tapered DFTs at Fourier frequencies are correlated, though type-II tapers are
not asymptotically correlated as T →∞ if |j − k| ≥ p.

This correlation between tapered periodogram ordinates can be taken into account in different
ways when the LP regression is designed. One alternative is to use only asymptotically uncorrelated
periodograms. For type-II tapers, such an approach would imply neglecting p − 1 frequencies of
every p in the LP regression. To alleviate the efficiency loss incurred following this policy, Hurvich
et al. (2002) use a pooling of periodogram ordinates as proposed by Robinson (1995a). However,
as the correlation dies out very fast in |j − k| for both types of tapered DFT, we can consider the
use of all frequencies in the LP regression as in the nontapered case, that is, use all

Ī
(v,p)
X (λj) =

K∑
k=1

I
(v,p)
X (λj+k−K), j = K, 2K, . . . , m,

and let that the correlation among adjacent logĪ(v,p)
X appear in the asymptotic variance of the LP es-

timates. For type-II tapers the correlation affects at most a fixed number of adjacent periodograms,
but for type-I tapers all periodograms display correlation.

Robinson (1995a), for p = 1 and all K, and Hurvich et al. (2002), for p > 1 and large K, give
explicit expressions for the expectation and variance of the pooled LP, log Ī(2,p)

X (λj), which can be
used to estimate the asymptotic variance of the LP regression memory estimate. Alternatively, we
can use a consistent estimate of the asymptotic variance based on the LP residuals, which takes
into account the LP correlation across Fourier frequencies,

σ2
K,v,p (k) = lim

T→∞
Cov

[
log Ī(v,p)

X (λj), log Ī(v,p)
X (λj+k)

]
, k = 0,±K,±2K, . . . .
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Note that in the nontapered case, σ2
K,v,1 (k) = 0 for k 6= 0, v = 1, 2. This correlation appears in the

asymptotic variance of the LP estimates, i.e. under standard conditions,

2m1/2
(
d̂
(v,p)
K − d

)
d→ N

(
0, KΩ(v,p)

K

)
where

Ω(v,p)
K = lim

T→∞

4m
K

∑
j

Λ2
j

−2∑
j

∑
k

ΛjΛkσ
2
K,v,p (j − k) .

A feasible estimate of Ω(v,p)
K , proposed by Arteche and Velasco (2004) along the lines of Robinson

(1995a), is

Ω̂(v,p)
K =

4m
K

∑
j

Λ2
j

−2∑
j

∑
|k|≤`

ΛjΛj+kσ̂
2
K,v,p (k) ,

where ` is a fixed integer such that ` ≥ K [1 + (p− 1)/K] when v = 2, and σ̂2
K,v,p are the sample

residual autocovariances

σ̂2
K,v,p (k) =

K

m

∑
j

û
(v,p)
m,j û

(v,p)
m,j+|k|, k = 0,±K,±2K, . . . ,

based on the observed residuals û(v,p)
m,j of the LP regression. Arteche and Velasco (2004) show the

consistency of such estimate for type-II tapers in a related context. For type-I tapers, v = 1 and
the lag number ` should be chosen to increase with T such that `−1 + `m−1 → 0 as T → ∞, to
account asymptotically for the correlation among all the tapered periodograms, as in usual HAC
asymptotic variance estimation.

Asymptotics of tapered LW estimates are considerably simpler than those of LP estimates and,
using all Fourier frequencies, j = 1, 2, . . . ,m, inference can be conducted according to

2m1/2(d̃(v,p)
LW − d) d→ N

(
0,Φ(v,p)

)
where

Φ(v,p) = lim
T→∞

T

(
T∑

t=1

∣∣∣h(v,p)
t

∣∣∣2)−2 T∑
t=1

∣∣∣h(v,p)
t

∣∣∣4 (33)

is a well known tapering inflation factor, Φ(v,p) ≥ 1, see Velasco (1999a) for more details.

These asymptotic results on tapered semiparametric memory estimates go through for nonsta-
tionary series if enough tapering is applied, i.e. if p is large enough compared to d. In particular, for
series with stationary increments, d < 1.5, any of the previous tapering schemes with p > 1 provide
consistent and asymptotically normal LP and LW estimates, where the asymptotic variances are
not affected by the possible nonstationarity, only by the tapering employed.

3.3 Alternative nonstationary fractional processes

There are other ways to define nonstationary long memory or fractionally nonstationary processes.
Thus, it is possible to consider (e.g. Robinson and Marinucci (2001), Phillips (1999)) processes ζt

of memory α generated by a truncated fractional filtering as

ζt = (1− L)−α {ηt1t>0 (t)} =
t−1∑
j=0

ψj(−α)ηt−j , t = 1, 2, . . . , (34)
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where 1A (·) is the indicator function of the set A, so all the past weakly dependent stationary
innovations ηt, t ≤ 0, are ignored. Truncation in the definition of ζt is necessary because the
coefficients ψj(−α) are not square-summable for α ≥ 1

2 . This convention makes essential the date
of the start of the observations. However, this framework can easily be generalized by allowing a
warming up period where the inflow of information can begin before we actually observe the process.
The filtered process ζt, though with finite variance for fixed t, is non-stationary for any value of
α 6= 0. However if α < 0.5, it converges in mean square as t → ∞ to the covariance stationary Xt

obtained by

Xt = (1− L)−αηt =
∞∑

j=0

ψj (−α) ηt−j , α < 0.5, (35)

cf. (4), for the same sequence of innovations ηj , j = 1, . . . , t. As Γ(α)ψj(−α) ∼ jα−1 as j → ∞,
when α ≥ 0.5 the variance of ζt grows without limit with t and ζt is nonstationary long-range
dependent in the sense of Heyde and Yang (1997). The long-range properties of the processes (34)
and (35) are described by the memory parameter α, and under regularity conditions and appropri-
ately normalized, such processes converge to different versions of fractional Brownian motion with
parameter α > 0.5 respectively (see Marinucci and Robinson (2000) for a discussion). This reflects
the fact that alternative definitions of nonstationary fractional processes differ in the treatment of
initial conditions, which are transmitted through a long range dependent process νt in (28), while
the stationary dynamics depend on the weakly dependent process ηt in (34).

Sufficient conditions for valid large sample LP inference on α for Gaussian processes defined by
(34) are investigated in Velasco (2004) using local conditions on the spectral density of ηt. Several
extensions of model (34) are considered, such as series with negative memory (α < 0), which are
relevant for statistical inference on fractionally differenced data; processes with filters initialized at a
remote point in the past; and fractional differencing and integration of stationary long memory time
series with ηt satisfying (3) with 0 < |d| < 0.5 (see Marinucci and Robinson (2001)). Robinson (2004)
considered bounds for the difference between the DFT of both types of nonstationary processes,
useful to investigate the asymptotic behavior of a large class of estimates linear in the periodogram.
The consistency of the LW estimate for asymptotically stationary processes given by (34), |α| < 0.5,
is studied in Marmol and Velasco (2004) for linear ηt. Also Shimotsu and Phillips (2004) have studied
the behavior of the LW estimate for series generated by (34) for the nonstationary and unit root
cases, showing similar results to when the series is given by a partial sum process, cf. (28).

However, the knowledge that ζt is given by (34) can be used directly in the estimation of α, either
through numerical properties of the DFT (similar to (29) but taking into account end effects) or
by using directly the time-domain truncated fractional differencing structure of ζt. The first route
is followed in Phillips (1999) and Kim and Phillips (2000) for the LP estimates and in Shimotsu
and Phillips (2000) for the LW estimates. The second option is pursued in Shimotsu and Phillips
(2005a), where the following exact LW log-likelihood is analyzed,

LE
m(a,G) =

1
m

m∑
j=1

{
logGλ−2a

j +
I∆aζ(λj)

G

}
,

where I∆aζ denotes the periodogram of the series

∆aζt =
t−1∑
j=0

ψj(a)ζt−j , t = 1, 2, . . . , T.

The normalization of the periodogram by λ2d
j used in Lm is replaced in LE

m by the fractional
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differencing of the original data, allowing in principle any value of α to be considered. The ELW
estimates are defined by minimization of LE

m(a,G) and, as usual, concentrating out G we obtain

α̂ELW
m = arg min

a∈D
RE

m(a),

where

RE
m(a) = log ĜELW

m (a)− 2a
1
m

m∑
j=1

log λj , ĜELW
m (a) =

1
m

m∑
j=1

I∆aζ(λj).

Under conditions slightly more restrictive than those of Robinson (1995b), Shimotsu and Phillips
(2005a) found that α̂ELW

m is consistent and asymptotically normal with the usual 1/4 asymptotic
variance when

1
m

+
m1+2γ log2m

T 2γ
+

log T
mε

→ 0, as T →∞,

for some ε > 0, where the parameter γ is equivalent to that given in (25) but for the spectral density
of ηt in (34). The interest in this procedure, which is somewhat more cumbersome than that of the
usual LW, is based on the fact that nonstationary values of α can be included in D, with the only
restriction being that ∇2 − ∇1 < 9/2, which requires limited prior information on the value of α,
avoiding in this way the efficiency loss of tapering. The relationship between these variants and the
traditional version of the LW estimator are discussed by Shimotsu and Phillips (2005b).

3.4 Cyclical and seasonal long memory

It is possible to conceive of stochastic processes Xt that show strong persistence at some frequency
ω ∈ (0, π] different from the origin, such that their spectral density satisfies

fX(ω + λ) ∼ GX |λ|−2d as λ→ 0. (36)

A time series with such a spectral density displays cycles of period 2π/ω, which are more persistent
the larger d is. The condition d < 1

2 entails stationarity by the integrability of fX . The autocovari-
ances of such processes show an asymptotic slow decay typical of long memory but with oscillations
that depend on the frequency ω where the spectral pole or zero occurs, so that

γj ∼ cX cos(jω)j2d−1 as j →∞

(see, e.g., Chung (1996), Andel (1986), who introduced the Gegenbauer ARMA (GARMA) processes,
or Gray, Zhang and Woodward (1989)). Oppenheim, Ould Haye and Viano (2000) and Lindholdt
(2002) show that the seasonal long memory that has been found in many macroeconomic time series
can be explained by cross-sectional aggregation and structural changes, providing ways of generat-
ing parametric seasonal long memory models. Arteche and Robinson (1999) called this property
Seasonal or Cyclical Long Memory (SCLM) and investigated semiparametric inference for SCLM
processes based on versions of the LP and LW estimates. When two-sided estimates are used, the
asymptotic variance should be adapted since, in fact, we are using 2m different periodograms instead
of the usual m when considering the zero frequency long memory. Arteche (2002) addresses the
issue of testing for equal memory parameters when more than one seasonal frequency is considered.

Arteche and Robinson (2000) have further introduced Seasonal or Cyclical Asymmetric Long
Memory (SCALM), for which

fX(ω + λ) ∼ GX1λ
−2d1 as λ→ 0+

fX(ω − λ) ∼ GX2λ
−2d2 as λ→ 0+,
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where ω ∈ (0, π), 0 < GXi < ∞, |di| < 1
2 , i = 1, 2, and it is permitted that d1 6= d2 and/or

GX1 6= GX2. This (semi)parameterization shows that the extension of the concept of long memory
from ω = 0 to any ω between 0 and π broadens the scope for modelling, since the spectrum is
symmetric about zero and π. The spectral asymmetry involves a different persistence for cycles
of period just shorter and just larger than 2π/ω. Arteche and Robinson (2000) have discussed
semiparametric inference based on one-sided LP and LW estimates for both memory parameters
d1 and d2. When d1 and d2 have opposite signs there is very strong leakage from the peak, which
indicates strong persistence, to the zero at the other side of the singularity, affecting noticeably
semiparametric inference in finite samples. To alleviate this problem, Arteche and Velasco (2004)
find similar benefits of tapering as those for treating symmetric nonstationary singularities in fX .

A related problem in some applications is the estimation of the location ω of the pole when
d > 0. Hidalgo and Soulier (2004) employed a semiparametric model for fX around ω,

fX(λ) = |1− ei(λ−ω)|−d|1− ei(λ+ω)|−df∗(λ),

to generate behavior such as (36). If f∗ is smooth this model allows for poles where the exponent
of the singularity is defined as α = d if ω ∈ (0, π) and as α = 2d if ω ∈ {0, π}. The estimate of ω
they propose is the maximum of the periodogram,

ω̂T =
2π
T

arg max
1≤j≤T̃

IX (λj) ,

where T̃ = [(T − 1)/2]. This estimate is consistent for Gaussian time series and its convergence
rate is close to the parametric rate T obtained by Giraitis, Hidalgo and Robinson (2001), but its
asymptotic distribution is unknown. Hidalgo (2001) investigates the asymptotic distribution of
an alternative estimate of ω which also has a rate of convergence close to the parametric rate T,
provided the process Xt has enough finite moments. Furthermore, Hidalgo and Soulier (2004) show
that the LP estimate of d when we plug in the estimate ω̂T is robust to estimation of the location
of the pole, with the usual asymptotic properties. This result relies on the symmetry of the peak
fX(λ) around ω and on the use of both sides of the periodogram around ω when ω ∈ (0, π).

4 Developments

In this section we consider two fields where the semiparametric methodology of memory estimation
has been widely developed and applied to solve inference problems on economic time series where
parametric models are often difficult to justify. These are fractionally cointegrated systems and
nonlinear models of conditional heteroskedasticity for time series with persistent volatility. In the
first case, the new challenges are related to the treatment of nonstationary series of unknown degree
of integration, together with the analysis of vector time series with degenerate long run dynamics in
the case of cointegration. In the second problem, the nonlinearity produces difficulties in applying
usual semiparametric methods, so ad-hoc modifications have been developed.

4.1 Fractional cointegration

We consider a P × 1 fractionally integrated vector

Zt = µ+ diag
{

(1− L)−d1 , . . . , (1− L)−dP

}
ut1t>0(t), t = 0, 1, 2, . . . ,
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with memory parameters d = (d1, . . . , dP )′ , where ut is a zero mean weakly dependent vector
process. The concept of (fractional) cointegration establishes that a certain (non-null) linear com-
bination b′Zt has less memory than the vector Zt in some sense. When we allow for different
memory parameters there are many ways to make precise such a definition (see, e.g., the review in
Robinson and Yajima (2002)). If we partition the original vector as Z′t = (X′

t, Yt) , then one of the
simplest possibilities is to state that Zt is fractionally cointegrated if there exists an M × 1 vector
β, M = P − 1, such that et = Yt − β′Xt is I(δ) with δ < dY . This definition implies that di = dY

for at least one i = 1, . . . ,M , since we impose the restriction that the coefficient of Yt in b is not
null, and leads to the linear regression representation

Yt = β′Xt + et, (37)

where β could be estimated by standard methods, such as OLS.

To develop this line of argument, define a version of the AP statistic introduced in Section 2.3,

Fab(n) = 2
2π
T

n∑
j=1

Re {Iab(λj)} −
2π
T

Iab(π)1 {n = T/2} , 1 ≤ n ≤ T/2.

Note that Fab([T/2]) is equal to the usual covariance matrix between at and bt, t = 1, . . . , T, so
Fab(n) reflects the contribution to that covariance from frequencies up to λn. Omitting the zero
frequency implies mean correction as usual. Robinson (1994a), for stationary series, and Robinson
and Marinucci (2001), for nonstationary processes, proposed the narrow band or frequency domain
least squares (FDLS) coefficients

βn = FXX(n)−1FXY (n)

to estimate the cointegrating vector β in the representation (37) under the assumption of rank one
cointegration (so β is the only direction which reduces the memory of Zt). See also Robinson and
Marinucci (2000), Chen and Hurvich (2003a) and Robinson and Iacone (2005) for related results in
the presence of deterministic trends and Marinucci (2000) for alternative estimates using continuous
periodogram averages.

When n = [T/2], βn is the OLS estimate with intercept, but n < [T/2] may be desirable. When
a nondegenerating band of frequencies is considered, n ∼ CT, C ∈ (0, 0.5) , this corresponds to the
band-spectrum regression introduced by Hannan (1963). However, when the convergence condition
(6) holds, βn still uses an increasing number of frequencies, but in a degenerating band around the
origin. This option solves the consistency problem of OLS estimates in stationary frameworks due
toe simultaneity bias, and in the nonstationary case also avoids some asymptotic bias terms and
focuses on the relevant frequencies for the analysis of long run relationships. The improvements
depend basically on the degree of nonstationarity of the observed series. The more interesting cases
analyzed in Robinson and Marinucci (2001) are the so called ’less than unit root nonstationarity’,
with di > 0.5, δ ≥ 0 and di + δ < 1, for which

T di+dmin−1
(
βi,[T/2] − βi

)
and T di−δnδ+dmin−1

(
βi,n − βi

)
(38)

converge to well defined nondegenerate random variables under (6), and the ’greater than unit root
nonstationarity’, with d1 = · · · = dM > 0.5 and δ > 0, di + δ > 1, when

T di−δ
(
βi,[T/2] − βi

)
and T di−δ

(
βi,n − βi

)
(39)
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both converge weakly. In the well studied case of unit root cointegration, d1 = · · · = dM = 1 and
δ = 0, the rate of convergence of both estimates is also T di−δ = T. The limits are functionals of
fractional Brownian motions. The standardizations in (38) show that FDLS may achieve a great
superiority over OLS given (6) holds, although some benefits can also be found in the unit root
case.

For these results to be useful requires, on the one hand, that there exists cointegration of rank
one (up to scale, only one cointegration vector exists) and, on the other hand, that the orders
of integration are known or can be estimated consistently. The existence of cointegration can be
deduced from the values of the memory parameters di, dy and δ, so we first concentrate on this
problem.

The memory of observables Xt can be estimated semiparametrically by any of the methods
discussed in Section 2. For the cointegrating errors et we could use similar ideas, but two further
problems arise, namely the use of the residuals êt = Yt− β̂

′
nXt, and the ignorance of whether these

are stationary or not. Dittmann (2000) studies the finite sample performance of several residual-
based tests for fractional cointegration. The effects of the use of residuals depend fundamentally
on the rates of convergence (38)-(39) of the estimates of the cointegrating vectors, which can be
very fast, but also arbitrarily slow when dmin is close to δ, even if it is assumed from the outset
that cointegration exists with stationary errors. Hassler, Marmol and Velasco (2003) and Velasco
(2003a) have studied the estimation of the memory parameters of the vector (X′

t, et)
′ with the

LP and LW estimates respectively, both using (FD)LS residuals êt or their increments, ∆êt. LW
memory estimation with (nonparametric) residuals was first studied by Robinson (1997). The main
conclusion is that asymptotic semiparametric inference for δ based on cointegrating residuals is not
affected by β estimation as far as the β̂n are superconsistent, i.e. di − δ > 0.5, all i. If di − δ ≤ 0.5
for some i, the semiparametric estimates of δ may remain consistent (LP estimates seem to require
further pooling or tapering), but with a slower rate. In the ‘greater than unit root nonstationarity’
case, original residuals or increments of the residuals have to be used depending on whether δ < 0.5
or δ > 0.5. However, tapering renders semiparametric inference robust to the decision of which input
is used. In the ‘less than unit root nonstationarity’ case, only original residuals should be used since
δ < 0.5 necessarily and there can be additional restrictions on the range of allowed bandwidths m
depending on the values of d and δ.

Using the theory reviewed in Section 2 we could test hypotheses on the values of the parameters
di and δ, but the previous restrictions under the assumption of cointegration lead to some caution
in constructing a direct test of the null of no cointegration, δ = d, against δ < d, assuming d1 =
· · · = dM . Alternatively, Marinucci and Robinson (2001) propose a Hausman (1978) type test based
on alternative LW estimates of d when M = 1,

Hm = 8m
(
d̂LW

m − d̃LW
m

)2

,

where the univariate d̂LW
m can be based on either ∆Xt or ∆Yt, and d̃LW

m is the efficient restricted
estimate of the memory dY = d1 with input (∆Xt,∆Yt)

′
, cf. (19). Then d̃LW

m and d̂LW
m have

asymptotic variances of 1/8 and 1/4 respectively, so their difference is expected to have asymptotic
variance 1/4− 1/8 = 1/8 under the null of no cointegration. Note that, under this null hypothesis,
the long run variance matrix GZ of Zt, is non-singular, and that d = δ, so the distribution of Hm

can be approximated by that of a χ2
1 variable, but under the alternative GZ is singular and d̃LW

m

will not be consistent for d.
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Velasco (2003b) considers an alternative semiparametric method of estimating the degree of
cointegration α = d − δ ≥ 0 of a vector Zt that avoids the use of residuals that depend on initial
slope estimates. For this it is assumed that the (pseudo) spectral density matrix fZ of the bivariate
vector Zt = (Xt, et)

′ satisfies

fZ(λ) = λ−2d

(
ΞXX ΞXeλ

α

ΞeXλ
α Ξeeλ

2α

)
(1 + o(1)) as λ→ 0+, (40)

where the matrix Ξ = {Ξab}, a, b ∈ {X, e}, is hermitian and nonsingular (see also Levy (2003)).
Then, using (37) and (40), it is possible to show that the squared coherence between Yt and Xt

satisfies
|RXY (λ)|2 ∼ 1− ΞHλ

2α as λ→ 0+, (41)

for a real constant 0 < ΞH <∞,

ΞH =
Ξe

ΞX

[
1− |ΞeX |2

ΞeΞX

]
=

Ge

GX

[
1− GeX

2

GeGX

]
,

that depends on the (normalized) noise to signal ratio and on the coherence at zero between Xt and
et using the long run variance GZ. Rearranging and taking logs in (41) we have that

log(1− |RXY (λ)|2) ∼ log ΞH + 2α log λ as λ→ 0+, (42)

which suggests the log-coherence regression estimate of α, analogous to GPH LP regression,

α̂m = −

 m∑
j=`

Λ2
j

−1
m∑

j=`

Λj log
(
1− |R̂XY,n(λj)|2

)
.

α̂m uses consistent estimates of |RXY (λ)|2 at frequencies λj in a degenerating band around the
origin,

|R̂XY,n(λj)|2 =
|f̂XY,n(λj)|2

f̂X,n(λj)f̂Y,n(λj)
,

where f̂XY,n, f̂X,n, f̂Y,n are nonparametric estimates of the corresponding (pseudo) spectral densities
with bandwidth n (see also Hidalgo (1996)). As in Robinson (1995a), a trimming of the very first
`− 1 coherence estimates is allowed. This approach is valid for both stationary and nonstationary
series (tapering might be used to eliminate an intercept or polynomial trend in (37) or to cover
very nonstationary situations, d ≥ 1) and it is not affected asymptotically by the endogeneity of the
residuals (ΞeX 6= 0). However, if Xt and et are incoherent at zero frequency, the semiparametric
model (42) provides a better approximation.

The analysis of α̂m is complicated with respect to the LP memory estimate due to the nonlin-
ear and nonparametric nature of the sample coherences |R̂XY,n(λj)|2. Velasco (2003b) showed the
consistency of α̂m and suggested to approximate its sample variability by

Var[α̂m] ≈

∑
j

Λ2
j

−2

4
∑

j

∑
k

ΛjΛk Cov
[
tanh−1(|R̂XY,n(λj)|), tanh−1(|R̂XY,n(λk)|)

]
. (43)

Here the transformation tanh−1 is variance-stabilizing because R̂XY,n is a sort of correlation coeffi-
cient in the frequency domain, and, when R̂XY,n uses spectral estimates with uniform weights over
2q + 1 Fourier frequencies, we can approximate the covariance in (43) by

Cov
[
tanh−1(|R̂XY,n(λj)|), tanh−1(|R̂XY,n(λj+p)|)

]
≈ 2q + 1− |p|

2(2q + 1)2
, p = 0,±1, . . . ,±2q,
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and assume that estimates of R̂XY,n evaluated at frequencies sufficiently far apart are asymptotically
uncorrelated. For tapered series this approximation has to be adjusted by Φ(v,p) as for the LW
memory estimates in (33).

Robinson and Yajima (2002) have investigated semiparametric methods of inference on the
cointegration rank of a stationary vector. The methods proposed depend, first, on obtaining subsets
of Zt with the same memory by sequential testing, using modified Wald tests based on (univariate)
LW semiparametric estimates to account for the degeneracy of the asymptotic distribution in case
of cointegration (because GZ is singular). The cointegration rank is then determined by analyzing
the eigenvalues of the estimate of GZ, given by ĜZ,m = ĜZ,m(d̃m) defined in (17), where d̃m is
the vector containing the univariate LW estimates of the memory of each of the components of Zt.

A similar procedure using ELW estimation is pursued by Nielsen and Shimotsu (2004).

Following a parallel route, Chen and Hurvich (2003b) study the properties of eigenvectors of
an AP matrix of differenced, tapered observations, where the bandwidth m is fixed in asymptotics.
They show that the eigenvectors corresponding to the smallest eigenvalues (as many as the cointe-
grating rank) lie close to the space of true cointegrating vectors with high probability. An implicit
assumption is that all cointegration relationships have the same memory, so Chen and Hurvich
(2004) propose to separate the space of cointegrating vectors into subspaces that might yield differ-
ent memory parameters. The rate of convergence for the estimated cointegrating vectors depends
only on the difference between the memory parameters in the given and adjacent subspaces, and
residual-based LW estimation of the memory parameters is proposed to consistently identify the
cointegrating subspaces and to test for fractional cointegration.

In a related, but nonstationary, framework, Marmol and Velasco (2004) propose a test for
fractional cointegration in a P × 1 nonstationary fractionally integrated (NFI ) vector

Zt = (1− L)−d {ut1t>0 (t)} , t = 0, 1, 2, . . . ,

where ut =
∑∞

j=−∞At−jεj is a linear process with iid innovations εt and long-run covariance
matrix Ω = A(1)A(1)′, A(1) =

∑∞
j=−∞Aj . With the partition Z′t = (Yt,X′

t), the matrix A(1) is
parameterized as

A(1) =

(
ω

1/2
Y Y

(
1− ρ2

)1/2
ρω′

XY Ω−1/2
XX

0 Ω1/2
XX

)
, ΩZZ =

(
ωY Y ω′

XY

ωXY ΩXX

)

where ΩXX is positive definite with ωY Y > 0, ω′
XY is an M × 1 vector satisfying ω′

XY Ω−1
XXωXY =

ωY Y , and ρ2 = ω′
XY Ω−1

XXωXY /ωY Y is the squared coefficient of multiple correlation computed from
ΩZZ, so that 0 ≤ ρ2 ≤ 1. The long-run covariance ωXY is given by ρωXY , where ωXY expresses
the direction of the covariance, while β0 = Ω−1

XXωXY is the projection vector of Yt on Xt. The
parameter ρ measures the strength of the covariance and the type of long run relationship among
the elements of the nonstationary Zt. When ρ2 < 1, ΩZZ is nonsingular and we say that Zt is
spuriously related. This model is completed when ρ2 = 1, so that ΩZZ is singular and the model is
disturbed to produce a (fractionally) cointegrated vector Zt with β′0Zt of memory δ ∈ [d− 1, d).

As is well known, in the spurious case usual OLS statistics of a regression of Yt on Xt may lead
to the conclusion that there is a meaningless linear relationship between the elements of Zt. This
result is in part a consequence of standardization by the residual sample variance, which ignores
any serial correlation (or nonstationarity) in the residual series. A first step towards a feasible
cointegration test is an alternative studentization of the OLS coefficients that uses all frequencies
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by means of the matrix

V̂T =

 T̃∑
j=−T̃

IX(λj)

−1
T̃∑

j=−T̃

IX(λj)Ibe(λj)

 T̃∑
j=−T̃

IX(λj)

−1

,

where I
be(λj) stands for the residual periodogram computed with the observed residuals êt = Yt −

β̂
′
T Xt, β̂T is the OLS coefficient in (37) and T̃ = [T/2]. The test statistic proposed by Marmol and

Velasco (2004) is given by the following Wald or adjusted F statistic

WT = WT (β̂T , β̂0,n) =
1
M

(
β̂T − β̂0,n

)′
V̂−1

T

(
β̂T − β̂0,n

)
,

where the OLS estimate β̂T is inconsistent under no cointegration and β̂0,n is an alternative semi-
parametric GLS-type estimate, which is consistent under this hypothesis,

β̂0,n = β̂0,n(d̂m, δ̂m) = Ω̂−1
XX,n(d̂m)ω̂XY,n(δ̂m). (44)

Here Ω̂XX,n is similar to ĜX,m in (17) up to a constant, but using a common d and the periodogram
of the increments of Xt,

Ω̂XX,n(d) =
2π
n

n∑
j=1

λ
2(d−1)
j Re{I∆X(λj)},

in the same way that

ω̂XY,n(δ) =
2π
n

n∑
j=1

λ
2(δ−1)
j Re{I∆X∆Y (λj)}

uses the cross periodogram of the increments ∆Xt and ∆Yt. In (44), d̂m is a log T -consistent
semiparametric estimate of d, as given in Sections 2.1-2.2, based on any subset of ∆Xt, but δ̂m

is a consistent estimate of δ based on OLS residuals. By contrast with the customary F -statistic,
constructed using the usual (time-domain) residual sum of squares, the Wald statistic WT has a
well defined limiting distribution under the null of a spurious relationship.

Under the null of no cointegration δ = d, both semiparametric memory estimates in β̂0,n have the
same probabilistic limit and the periodograms in Ω̂XX,n(d̂m) and ω̂XY,n(δ̂m) are (asymptotically)
properly normalized, so β̂0,n is consistent for β0 if

{
qd−2 + qε−1 log T

}
log2 T + qT−1 → 0, for

q = n,m and some ε > 0, together with the usual regularity conditions on the spectral density of
ut. However, under the alternative of fractional cointegration, δ < d, ω̂XY,n(δ̂m) does not have the
adequate normalization, and it can be shown to diverge as T, n→∞, whereas Ω̂XX,n(d̂m) remains
consistent for ΩXX. Therefore, the Wald statistic diverges with T when 0 < d− δ < 0.5, leading to
the consistency of the test that rejects the null of no cointegration for large values of WT .

4.2 Nonlinear models

Many economic time series display conditional heteroskedasticity, this being the main feature of the
dynamics of many asset prices, whose levels are assumed generally to form a martingale sequence.
Robinson and Henry (1999) and Henry (2001) illustrate the robustness of LW and AP estimation of
the memory of the levels in the presence of conditional heteroskedasticity. Recent interest has been
focused on the estimation of the degree of persistency of volatility itself through a long memory
parameter that describes the slowly decaying autocorrelation of nonlinear transformations of the
returns of the corresponding asset. The availability of long records of high-frequency returns of many
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financial assets calls for the intensive use of the semiparametric methodology in the investigation of
the long range properties of these time series.

Robinson (1991) proposed that the conditional volatility σ2
t = Var[Xt|It−1] series, where Is is

the σ-field of events generated by Xk, k ≤ s, may display long range dependence in an ARCH(∞)
specification,

σ2
t = σ2 +

∞∑
j=1

θjX
2
t−j ,

where θj decay slowly as the weights ψj(d) in (4) for d > 0, and propose LM testing of this
possibility. This has also been an issue in applied work, see e.g. Ding, Granger and Engle (1993).

Considerable effort has been put into studying parametric generalized autoregressive conditional
heteroskedasticity (GARCH) specifications which actually produce long range dependence in σ2

t and
valid inference procedures (see e.g. the fractionally integrated GARCH (FIGARCH) model of Bail-
lie, Bollerslev and Mikkelsen (1996), the fractionally integrated exponential GARCH (FIEGARCH)
of Bollerslev and Mikkelsen (1996), or Giraitis, Robinson and Surgailis (2000)), including also
semiparametric proposals (Giraitis, Kokoszka, Leipus and Teyssière (2000)). However, stochastic
volatility (SV) specifications have been more amenable for semiparametric analysis. Harvey (1998)
and Breidt, Crato and de Lima (1998) studied a Long Memory SV (LMSV) model for asset returns
defined by

Xt = σtξt, σt = σ exp (vt/2) ,

where vt is a stationary long memory process independent of ξt, which is itself iid with zero mean
and unit variance. The persistence in the volatility of Xt depends on the persistence of vt. Breidt
et al. (1998) proposed its estimation by a global Whittle estimate, using the linearization

logX2
t = log σ2

t + log ξ2t (45)

= log σ2 + E
[
log ξ2t

]
+ vt +

{
log ξ2t − E

[
log ξ2t

]}
= µ+ vt + ut,

say, where ut is a zero mean iid random sequence and independent of vt, whose spectral density
depends on some parameters. Note that the autocovariances of logX2

t are the same as those of vt

except at lag zero, for which it is σ2
v +σ2

u. A justification of such procedures can be found in Hosoya
(1997).

However, semiparametric methods are also natural in this context if we assume that fv satisfies
(3), especially given the difficulty of properly specifying all short run dynamics and the availability
of long data sets at different sampling frequencies. Breidt et al. (1998) and Andersen and Bollerslev
(1997) propose LP estimation on some nonlinear transformation of Xt, such as logX2

t or |Xt|, but
this violates the usual Gaussianity assumption. In the case of a LMSV, note that if vt follows
a fractional model with spectral density |2 sinλ/2|−2dg∗v(λ), then flog X2(λ) = |2 sinλ/2|−2df∗(λ),
where now

f∗(λ) = g∗v(λ) + |2 sinλ/2|2dσ
2
u

2π
= g∗v(0)

{
1 +O(λ2d)

}
as λ→ 0+, (46)

for smooth g∗. This justifies the use of customary semiparametric models since f∗ is bounded above
and away from zero (if g∗v(λ) is bounded for all λ and positive at λ = 0) and flog X2(λ)/fv(λ) → 1 as
λ→ 0. Deo and Hurvich (2001) show that the central limit theorem (8) for the LP estimate holds
for Gaussian vt when we replace IX by Ilog X2 , and m is chosen to satisfy

log2 T

m
+
m4d+1 log2m

T 4d
→ 0 as T →∞, (47)
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with f∗ twice differentiable. This condition corresponds to that of Robinson (1995a, Assumption
6) when γ = 2d in (25), cf. (46). Note that this result implies that d > 0 (and γ > 0), so long
memory in vt is assumed. Hurvich and Soulier (2002) have extended the previous result to the case
d = 0 for volatility persistence testing, whereas Arteche (2004) gives a similar analysis for the LW
estimate leading to (11) under the usual conditions and (46)-(47).

The additive structure of f∗ in (46) suggests a bias problem in the selection of the bandwidth
m, much restricted when d is small. To control this problem, Sun and Phillips (2003), in the spirit
of the bias reduction techniques of Section 2.4, propose enlarging the LP regression with a term
in λ2d, cf. (21), thus leading to the so called nonlinear LP (NLP) regression estimate, which now
has no explicit expression. It is shown that the NLP estimate is consistent under (6), allowing for
σ2

u = 0, but d > 0. If further

T 4d(1+ε)

m4d(1+ε)+1
+
m8d+1

T 8d
→ 0 as T →∞,

for some ε > 0, which allows for much larger choices of m than (47), and so faster converging
estimates, then

2m1/2
(
d̂NLP

m − d
)

d→ N

(
0,
π2

6
(2d+ 1)2

4d2

)
.

This limit, by contrast, reflects the increase in asymptotic variance due to the use of additional
(nonlinear) regressors.

Hurvich and Ray (2003) exploit the same idea for the PLW estimate, introducing the term in
λ2d in (27), with exp (−pr(λj ;θ)) replaced by 1 + θλ2d

j , and consider possibly nonstationary time
series. Denoting this estimate as d̂NLW

m , Hurvich and Ray show that

2m1/2
(
d̂NLW

m − d
)

d→ N

(
0,

(2d+ 1)2

4d2

)
,

for d ∈ (0, 0.75) if
T 4d

m4d+1
+
m2γ+1 log2m

T 2γ
→ 0 as T →∞, (48)

under (25), for linear vt and γ > 2d. Note that typically γ = 2 for regular cases, cf. (25).

Building on this series of works, Hurvich, Moulines and Soulier (2005) consider a semiparametric
specification for the spectral density of logX2

t that nests both the LMSV and the FIEGARCH
models, allowing for possible correlation between the signal and noise processes in (45) by means of
the augmented correction factor

1 + θ1λ
2d
j Re

((
1− eiλj

)−d
)

+ θ2λ
2d
j , (49)

which replaces exp (−pr(λj ;θ)) in the nonlinear PLW criterion (27). In this way they nest the
usual LW and the NLW estimate of Hurvich and Ray (2003) setting θ1 = θ2 = 0 or θ1 = 0,
respectively. The NLW estimate defined using the correcting factor (49), d̂N2LW

m say, recovers
basically the optimal semiparametric rate of convergence implied by (48), and its additional bias
control properties have the counterpart of an increased asymptotic variance, since

2m1/2
(
d̂N2LW

m − d
)

d→ N

(
0, (d+ 1)2

(2d+ 1)2

4d2

)
,

for d ∈ (0, 0.75) if, additionally to (48), T 4dmε−4d−1 → 0 for some ε > 0.
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Apart from the problems of bias and bandwidth choice, other difficulties arise in semiparametric
estimation of the persistence of financial time series. These include the choice of volatility measures
and the role of aggregation (Bollerslev and Wright (2000)), the treatment of smooth trends and
cointegration (Lobato and Velasco (2000), Christensen and Nielsen (2002)), or seasonality and
efficient estimation, see e.g. Deo, Hurvich and Lu (2005). In particular Deo et al. (2005) investigate
the choice of power transformations to make the distribution of logX2

t closer to Gaussian to enhance
the properties of a Whittle estimate of a LMSV model, noting that this procedure might affect the
persistence of the volatility series (Dittmann and Granger (2002)).

4.3 Other areas of application

Semiparametric inference on persistence properties of time series is applied in many other fields
of economic empirical analysis. Apart from descriptive and exploratory analysis, semiparametric
estimation and testing of the degree of integration are key in the modelling of many macroeconomic
series, specially in the presence of complex cyclical, seasonal or short run dynamics. These applies
to series of output (Diebold and Rudebush (1989), Michelacci and Zaffaroni (2000)), consumption
(Diebold and Rudebush (1991)), exchange rates (Cheung (1993)) and inflation (Hassler and Wolters
(1995)). Following the application of a modified R/S analysis by Lo (1991), frequency and time
domain semiparametric methods have been also used to document long memory in stock prices (Lee
and Robinson (1996), Lobato and Savin (1997)) and the relationship of volatility with other time
series, such as traded volume (Bollerslev and Jubinski (1999)).

Semiparametric estimates, despite their inefficiency, can also be used in optimization routines or
in plug-in methods which do not require a fast converging, but a robust, initial estimate of the long
run memory parameter. This is important in (fractional) cointegration analysis (see e.g. Robinson
and Hualde (2003) or Marmol and Velasco (2004)). In this line, a main field of application of
semiparametric methods is serving in the studentization of other parameter estimates, possibly of
parametric nature, or in testing problems, as pursued in a general setting by Robinson (2005). A
related problem is the design of efficient semiparametric estimates of regression coefficients in the
presence of long memory time series as in Hidalgo and Robinson (2002) or Hualde and Robinson
(2004).

5 Conclusion

There is a growing menu of semiparametric methods offered to the practitioner to analyze long
memory properties of economic time series. Despite initial analyses have focused on LP estimation,
mainly because of its computational appeal and the availability of approximate inference rules, LW
methodology has arisen as more efficient, flexible and robust to the presence of non-Gaussian char-
acteristics or changing conditional higher moments. However, the final performance of the semipara-
metric methodology depends dramatically on the bandwidth choice, specially when nonstationarity,
trending of cyclical behaviours may affect the dynamics of the series under investigation. In these
cases, it is a recommendable policy the use of an appropriate modification of those suggested to
robustify semiparametric memory estimation. Tapering provides a simple solution, but due to the
loss of efficiency implied, it might be only appropriate if long enough records are available. In the
presence of substantial ignorance on the degree of integration, ELW methods can provide more
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efficient solutions, but these might be more sensitive to the presence of unknown mean or trends
(Shimotsu, 2004). Volatility analysis based on nonlinear transformations of returns should account
for the bias problem that otherwise may affect severely semiparametric inference for a wide range of
bandwidths. In all cases, automatic bandwidth choices must be confronted with knowledge about
cyclical and seasonal patterns which restrict in applications the validity of the basic long memory
semiparametric model.

As in many other inference problems, semiparametric methods in time series analysis are of
general application and apparently require limited degree of previous knowledge or study. However
some care must be taken when employing these methods blindly. Following some justifications
for the presence of long memory on observed time series by aggregation mechanisms of different
nature, possibly involving heavy tails innovations (see the review in Diebold and Inoue (2001)),
several simple models which are able to reproduce some long range dependence properties have
been investigated. Many of the models developed are not properly long memory, as defined in the
Introduction, but with an appropriate choice of key parameters can generate long memory features
in finite samples, as described for example by the convergence rate of partial sums or correlograms
(see e.g. Granger and Terasvirta (1999)). GPH’s LP regression estimate is one of the benchmarks
used by Gourieroux and Jasiak (2001), Diebold and Inoue (2001) and Granger and Hyung (2004) to
evaluate different models, including stochastic permanent break, regime switching and occasional
structural break models. It turned out that this semiparametric estimate is highly biased for the
estimation and testing of the true degree of integration of the process, issuing a serious warning
on the possibility that routine application of these methods lead to the finding of spurious long
memory if data present some of these features. Some remedies can consist on previous application
of structural break tests robust to long memory (see the revision in Banerjee and Urga (2005)) or
allowance for possible breaks in memory estimation (e.g., Bos, Franses and Ooms (1999) and Choi
and Zivot (2005)).

Despite these potential drawbacks, which may affect even more seriously the specification and
estimation of parametric models, semiparametric inference for long memory processes has an in-
creasing scope for the analysis of economic time series. Future developments can be expected in the
derivation of (semi)automatic methods of inference, procedures for the study of multivariate possi-
bly nonstationary and cointegrated time series, and specific techniques for the analysis of nonlinear
and financial time series.
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